On Kadison's Schwarz inequality for quantum quadratic operators on M2(C) and their dynamics /

In this thesis we describe bistochastic Kadison-Schwarz operators on M2(C). Such a description allows us to find positive, but not Kadison-Schwarz operators. Moreover, by means of such a characterization we construct Kadison-Schwarz operators, which are not completely positive. Then we describe quan...

Full description

Saved in:
Bibliographic Details
Main Author: Abduganiev, Abduaziz
Format: Thesis
Language:English
Published: Kuantan, Pahang : Kulliyyah of Science, International Islamic University Malaysia, 2011
Subjects:
Online Access:Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library.
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 029090000a22003610004500
008 110921t2011 my a g m 000 0 eng d
040 |a UIAM  |b eng 
041 |a eng 
043 |a a-my--- 
050 0 0 |a QA326 
100 1 |a Abduganiev, Abduaziz  |9 353475 
245 1 |a On Kadison's Schwarz inequality for quantum quadratic operators on M2(C) and their dynamics /  |c by Abduaziz Abduganiev 
260 |a Kuantan, Pahang :  |b Kulliyyah of Science, International Islamic University Malaysia,   |c 2011 
300 |a xi, 83 leaves :  |b ill. ;  |c 30cm. 
336 |2 rdacontent 
337 |2 rdamedia 
338 |2 rdacarrier 
500 |a Abstracts in English and Arabic. 
500 |a "A thesis submitted in fulfilment of the requirement for the degree of Master of Science (Computational and Theoretical Sciences)."--On t.p. 
502 |a Thesis (MSCTS)--International Islamic University Malaysia, 2011. 
504 |a Includes bibliographical references (leaves 79-82). 
520 |a In this thesis we describe bistochastic Kadison-Schwarz operators on M2(C). Such a description allows us to find positive, but not Kadison-Schwarz operators. Moreover, by means of such a characterization we construct Kadison-Schwarz operators, which are not completely positive. Then we describe quantum quadratic operators on M2(C) with Haar state. Using such a description, we find a necessary condition for quantum quadratic operators that satisfy the Kadison-Schwarz property. This condition allows us to construct quantum quadratic operators which are not Kadison-Schwarz ones. Also we provide examples of quadratic operators for which corresponding linear mappings are not positive. Furthermore, we study nonlinear dynamics of quadratic operators acting the set of states of M2(C). Namely, we find some conditions for the stability of unique fixed point of such operators. Besides, dynamics of certain concrete quadratic operators are investigated. 
650 0 0 |a Operator algebras  |9 353476 
650 0 0 |a Inequalities (Mathematics)   |9 353477 
655 7 |a Theses, IIUM local 
690 |a Dissertations, Academic  |x Department of Computational and Theoretical Sciences  |z IIUM  |9 9140 
710 2 |a International Islamic University Malaysia.  |b  Department of Computational and Theoritical Sciences  |9 353478 
856 4 |u https://lib.iium.edu.my/mom/services/mom/document/getFile/YNCAehp9gtYMntpgNhC6VRcv2jD2ffqN20120808084131637  |z Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library. 
900 |a hab-ro-rose 
942 |2 lcc  |n 0 
999 |c 434875  |d 463827 
952 |0 0  |6 T QA 000326 A000135O 002011  |7 0  |8 THESES  |9 751595  |a KIMC  |b KIMC  |c CLOSEACCES  |g 0.00  |o t QA 326 A135O 2011  |p 00011232076  |r 2019-09-04  |t 1  |v 0.00  |y THESIS 
952 |0 0  |6 TS CDF QA 326 A135O 2011  |7 0  |8 THESES  |9 846946  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o ts cdf QA 326 A135O 2011  |p 11100326638  |r 2017-10-26  |t 1  |v 0.00  |y THESISDIG