Automated human recognition and tracking for video surveillance system /

Recent research in video surveillance system has shown an increasing focus on creating reliable systems utilizing non-computationally expensive technique for observing humans' appearance, movements and activities, thus providing analytical information for advanced human behavior analysis and re...

Full description

Saved in:
Bibliographic Details
Main Author: Fadhlan Hafizhelmi bin Kamaru Zaman
Format: Thesis
Language:English
Published: Gombak, Selangor : Kulliyyah of Engineering, International Islamic University Malaysia, 2010
Subjects:
Online Access:http://studentrepo.iium.edu.my/handle/123456789/4355
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 031320000a22003250004500
008 110107n2010 my ad g m 000 0 eng d
040 |a UIAM  |b eng 
041 |a eng 
050 0 0 |a TK6680.3 
100 1 |a Fadhlan Hafizhelmi bin Kamaru Zaman 
245 1 |a Automated human recognition and tracking for video surveillance system /  |c by Fadhlan Hafizhelmi Bin Kamaru Zaman 
260 |a Gombak, Selangor :  |b Kulliyyah of Engineering, International Islamic University Malaysia,   |c 2010 
300 |a xviii, 153 leaves :  |b ill. charts ;  |c 30cm. 
500 |a Abstracts in English and Arabic. 
500 |a "A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science (Communication Engineering)."--On t.p. 
502 |a Thesis (MSCE)--International Islamic University Malaysia, 2010. 
504 |a Includes bibliographical references (leaves 128-135). 
520 |a Recent research in video surveillance system has shown an increasing focus on creating reliable systems utilizing non-computationally expensive technique for observing humans' appearance, movements and activities, thus providing analytical information for advanced human behavior analysis and realistic human modeling. In order for the system to function, it requires robust method for detecting and tracking human from a given input of video streams. In this thesis, a human detection technique suitable for video surveillance is presented which requires fast computations in addition of accurate results. The techniques proposed include adaptive frame differencing for background subtraction, contrast adjustment for shadow removal, and shape based approach for human detection. The tracking technique on the other hand uses correspondence approach. Event Based Video Retrieval (EBVR) system is also proposed for efficient surveillance data management and automated human recognition with unique ID assignment. Proposed human detection and tracking are integrated with EBVR and motion detection into a complete automated surveillance system called Active Vis Video Surveillance Analysis System (AVSAS) which produces good result and real-time performance especially in non-crowded scene. The EBVR system also proves to be able to handle automated human recognition with unique ID assignment accurately. 
596 |a 1 
650 0 0 |a Video surveillance 
650 0 0 |a Human activity recognition 
650 0 0 |a Automatic tracking 
655 7 |a Theses, IIUM local 
690 |a Dissertations, Academic  |x Department of Electrical and Computer Engineering  |z IIUM 
710 2 |a International Islamic University Malaysia.  |b Department of Electrical and Computer Engineering 
856 4 |u http://studentrepo.iium.edu.my/handle/123456789/4355 
900 |a hab-ro-zhmn 
999 |c 435275  |d 464057 
952 |0 0  |6 T TK 006680.000003 F000144A 002010  |7 0  |8 THESES  |9 753843  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o t TK 6680.3 F144A 2010  |p 00011204606  |r 2017-10-20  |t 1  |v 0.00  |y THESIS 
952 |0 0  |6 TS CDF TK 006680.000003 F000144A 002010  |7 0  |8 THESES  |9 845344  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o ts cdf TK 6680.3 F144A 2010  |p 11100326891  |r 2017-10-26  |t 1  |v 0.00  |y THESISDIG