Banach-Kantorovich C*-algebras and zero-two laws for positive contractions /

In this thesis, we study C^*-algebras over Arens algebras. Moreover, we consider C^*-algebra of sections and will prove that C^*-algebra over L^ω is isometrically *-isomorph to C^*-algebra L^ω (Ω,X). Furthermore, we investigate the state space of C^*-algebras over L^ω. We also study dominated oper...

Full description

Saved in:
Bibliographic Details
Main Author: Bekbaev, Dilmurod (Author)
Format: Thesis
Language:English
Published: Kuantan, Pahang : Kulliyyah of Science, International Islamic University Malaysia, 2017
Subjects:
Online Access:Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library.
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 029900000a22002890004500
008 170426s2017 my a f m 000 0 eng d
040 |a UIAM  |b eng  |e rda 
041 |a eng 
043 |a a-my--- 
050 0 0 |a QA326 
100 1 |a Bekbaev, Dilmurod,  |e author 
245 1 |a Banach-Kantorovich C*-algebras and zero-two laws for positive contractions /  |c by Dilmurod Bekbaev 
264 1 |a Kuantan, Pahang :  |b Kulliyyah of Science, International Islamic University Malaysia,  |c 2017 
300 |a x, 80 leaves :  |b illustrations ;  |c 30cm. 
336 |2 rdacontent  |a text 
502 |a Thesis (Ph.D)--International Islamic University Malaysia, 2017. 
504 |a Includes bibliographical references (leaves 75-78). 
520 |a In this thesis, we study C^*-algebras over Arens algebras. Moreover, we consider C^*-algebra of sections and will prove that C^*-algebra over L^ω is isometrically *-isomorph to C^*-algebra L^ω (Ω,X). Furthermore, we investigate the state space of C^*-algebras over L^ω. We also study dominated operators acting on Banach-Kantorovich L_p-lattices. Further, using the methods of measurable bundles of Banach-Kantorovich lattices, we prove the strong zero-two law for the positive contractions of the Banach-Kantorovich lattices L_p (∇,m). After that, we illustrate an application of the methods used in previous study to prove a result related to dominated operators. Thereafter, we collect some necessary well-known facts about non-commutative L_1-spaces. Then we prove an auxiliary result about dominant operators. Next, we prove a generalized uniform "zero-two" law for multi-parametric family of positive contractions of the non-commutative L_1-spaces. Furthermore, we recall necessary definitions about L_1 (M,Φ) – the non-commutative L_1-spaces associated with center valued traces and we show auxiliary result about the existence of the non-commutative vector-valued lifting. Finally, we prove that every positive contraction of L_1 (M,Φ) can be represented as a measurable bundle of positive contractions of non-commutative L_1-spaces, and this allows us to establish a vector- valued analogue of the uniform "zero-two" law for positive contractions of L_1 (M,Φ). 
596 |a 1 6 
655 7 |a Theses, IIUM local 
690 |a Dissertations, Academic  |x Kulliyyah of Science  |z IIUM 
710 2 |a International Islamic University Malaysia.  |b Kulliyyah of Science 
856 4 |u http://lib.iium.edu.my/mom/services/mom/document/getFile/BoTmGDQjZE8pvgM5SE9plS7KooyeOlzl20170720112352927  |z Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library. 
900 |a sbh-aaz-ls 
999 |c 436596  |d 467187 
952 |0 0  |6 T QA 000326 B424B 2017  |7 0  |8 THESES  |9 761655  |a KIMC  |b KIMC  |c CLOSEACCES  |g 0.00  |o t QA 326 B424B 2017  |p 11100362011  |r 2019-09-04  |t 1  |v 0.00  |y THESIS 
952 |0 0  |6 TS CDF QA 326 B424B 2017  |7 0  |8 THESES  |9 855761  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o ts cdf QA 326 B424B 2017  |p 11100362012  |r 2018-08-10  |t 1  |v 0.00  |y THESISDIG