A classification package for remote sensing data /

"A picture is worth one thousand words". This Chinese proverb dates back to 2500 years ago gives us a quick glance of the importance of images and information that might be contained in it. With the advent of photography equipment and techniques combination to revolution of computer and di...

全面介紹

Saved in:
書目詳細資料
主要作者: Zaid, Mohsin Asaad
格式: Thesis
語言:English
出版: Kuala Lumpur : Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, 2013
主題:
在線閱讀:Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library.
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
LEADER 027360000a22002770004500
008 130902t2013 my a g m 000 0 eng d
040 |a UIAM  |b eng 
041 |a eng 
043 |a a-my--- 
050 0 0 |a TA1637 
100 1 |a Zaid, Mohsin Asaad  
245 1 2 |a A classification package for remote sensing data /  |c by Mohsin Asaad Zaid 
260 |a Kuala Lumpur :  |b Kulliyyah of Information and Communication Technology, International Islamic University Malaysia,   |c 2013 
300 |a xii, 91 leaves :  |b ill. ;  |c 30cm. 
502 |a Thesis (MIT)--International Islamic University Malaysia, 2013. 
504 |a Includes bibliographical references (leaves 79-85). 
520 |a "A picture is worth one thousand words". This Chinese proverb dates back to 2500 years ago gives us a quick glance of the importance of images and information that might be contained in it. With the advent of photography equipment and techniques combination to revolution of computer and digitalization in both hardware and software this importance takes another dimensions.This research is a trying to shade a light on the Multi-Spectral Image Classification and the importance of this field in Image processing. Two classification approaches were included, Supervised and Unsupervised Classification. Three types of supervised classification were explained, Minimum Distance (MD), Maximum Likelihood (ML), and Probabilistic Neural Network (PNN). Also two types of unsupervised classification were contained, K-Means (KM) and Kohonen Neural Network (KNN). The research involves design a package for Multi-Spectral Images classification. This includes reading data, apply Principal Component Analysis (PCA) as a feature extraction, then apply False Colour Composite (FCC) as one of the classification techniques in multi-spectral images. The research used two types of classification methods one is a supervised method, which is Minimum Distance (MD) approach, and the second one is unsupervised method that is K-Means approach (KM). 
596 |a 1 
655 7 |a Theses, IIUM local  
690 |a Dissertations, Academic  |x Department of IS  |z IIUM 
710 2 |a International Islamic University Malaysia.  |b Department of IS 
856 4 |u http://studentrepo.iium.edu.my/handle/123456789/5633  |z Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library. 
900 |a ro-rose-hab-naw 
999 |c 438262  |d 470296 
952 |0 0  |6 T TA 001637 Z21C 2013  |7 0  |8 THESES  |9 759087  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o t TA 1637 Z21C 2013  |p 00011292111  |r 2017-10-20  |t 1  |v 0.00  |y THESIS 
952 |0 0  |6 TS CDF TA 1637 Z21C 2013  |7 0  |8 THESES  |9 851256  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o ts cdf TA 1637 Z21C 2013  |p 00011292112  |r 2017-10-26  |t 1  |v 0.00  |y THESISDIG