On infinite dimensional orthogonal preserving and surjective quadratic stochastic operators /

In this thesis we consider a class of quadratic stochastic operators (QSOs) namely, orthogonal preserving QSOs (OP QSOs). First chapter is devoted to the literature review, problem statements, objectives, preliminaries and overviews of the whole thesis. We recall some achievements on permutation Vol...

Full description

Saved in:
Bibliographic Details
Main Author: Ahmad Fadillah bin Embong (Author)
Format: Thesis
Language:English
Subjects:
Online Access:Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library.
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 034830000a22003010004500
008 190521s2019 my a f m 000 0 eng d
040 |a UIAM  |b eng  |e rda 
041 |a eng 
043 |a a-my--- 
050 0 0 |a QA274.2 
100 0 |a Ahmad Fadillah bin Embong,  |e author 
245 1 |a On infinite dimensional orthogonal preserving and surjective quadratic stochastic operators /  |c by Ahmad Fadillah bin Embong 
264 1 |a Kuantan, Pahang :  |b Kulliyyah of Science, International Islamic University Malaysia,  |c 2019 
300 |a xi, 137 leaves :  |b illustrations ;  |c 30cm. 
336 |2 rdacontent  |a text 
347 |2 rdaft  |a text file  |b PDF 
502 |a Thesis (Ph.D)--International Islamic University Malaysia, 2019. 
504 |a Includes bibliographical references (leaves 131-136). 
520 |a In this thesis we consider a class of quadratic stochastic operators (QSOs) namely, orthogonal preserving QSOs (OP QSOs). First chapter is devoted to the literature review, problem statements, objectives, preliminaries and overviews of the whole thesis. We recall some achievements on permutation Volterra QSOs, OP QSOs and surjective QSOs defined over a finite dimensional simplex (i.e., the set of all probability distributions on a finite subset of natural numbers) in the second chapter. Indeed, permutation Volterra QSOs, OP QSOs and surjective QSOs are equivalent classes. Since finite dimensional Volterra QSOs were well-studied, therefore we continue the investigation over infinite dimensional simplex in Chapter 3. We provide a concrete form for any OP QSOs could take. Several examples are given and some properties of such mapping are described. Note that, every Volterra QSO is an OP QSO. Due to the complexness to study the dynamics for the whole set of OP QSOs on infinite dimensional simplex, so we restrict ourselves to some classes of Volterra QSOs. In particular, Chapter 4 is focusing on the study of ω−limit set (i.e., the set contains all the limiting points) of some classes of Volterra QSOs. The technique of Lypunov functions is employed here to estimate such set. The significant difference between finite and infinite case is that the ω−limit set (wrt ℓ1−norm) could be empty. Moreover, we show that there is a class of Volterra QSOs which satisfies weak ergodic but fail to be ergodic (see Defintion 4.2.4). In Chapter 5, we investigate surjectivity of infinite dimensional simplex. Unlike finite case, OP QSOs and surjective QSOs are different classes. Thus, we provide necessary and sufficient conditions for infinite dimensional surjective QSOs. Moreover, if one takes a QSO which is OP and surjective, then the operator must be a permutation Volterra. 
596 |a 1 6 
655 7 |a Theses, IIUM local 
690 |a Dissertations, Academic  |x Kulliyyah of Science  |z IIUM 
710 2 |a International Islamic University Malaysia.  |b Kulliyyah of Science 
856 4 |u https://lib.iium.edu.my/mom/services/mom/document/getFile/8Uyp7WVXpbhZqjMDygLdLKX2t4sJuRHX20200804103914937  |z Click here to view 1st 24 pages of the thesis. Members can view fulltext at the specified PCs in the library. 
900 |a sz-aaz 
999 |c 441959  |d 472012 
952 |0 0  |6 T QA 000274.2 A286I 2019  |7 0  |8 THESES  |9 763338  |a KIMC  |b KIMC  |c CLOSEACCES  |g 0.00  |o t QA 274.2 A286I 2019  |p 11100414557  |r 2020-09-28  |t 1  |v 0.00  |y THESIS 
952 |0 0  |6 TS CDF QA 274.2 A286I 2019  |7 0  |8 THESES  |9 858249  |a IIUM  |b IIUM  |c MULTIMEDIA  |g 0.00  |o ts cdf QA 274.2 A286I 2019  |p 11100414558  |r 2020-09-28  |t 1  |v 0.00  |y THESISDIG