Enhancement of egg signals classification by linear discriminant analysis for brain computer interface /
Motor imagery (MI) based electroencephalogram (EEG) signals classification is under research for the last few decades to develop a robust and user-friendly brain-computer interface (BCI) system without compromising its simplicity and efficiency. The number of channel selections is still the most cha...
محفوظ في:
المؤلف الرئيسي: | Alam, Mohammad Nur (مؤلف) |
---|---|
التنسيق: | أطروحة كتاب |
اللغة: | English |
منشور في: |
Kuala Lumpur :
Kulliyyah of Engineering , International Islamic University Malaysia,
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://studentrepo.iium.edu.my/handle/123456789/11415 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Advanced techniques for classification of multi-channel EEG signals for brain computer interface /
بواسطة: Hasan, Mohammad Rubaiyat
منشور في: (2015) - Classification of vision perception using EEG signals for brain computer interface
-
Signal Processing and Classification of Visual Evoked Potentials in a Brain Computer Interface
بواسطة: Samraj, Andrews
منشور في: (2009) -
Classification Of P300 Signals In Brain-Computer Interface Using Neural Networks With Adjustable Activation Functions
بواسطة: Aslarzanagh, Seyed Aliakbar Mousavi
منشور في: (2013) -
Brain Computer Interface Design Using Neural Network Classification of Autoregressive Models of Mental Task Electroencephalogram Signals.
بواسطة: Huan, Nai Jen
منشور في: (2004)