Stock Trend Prediction With Neural Network Techniques
This thesis presents a study and implementation of stock trend prediction using neural network techniques. The multilayer-perceptron (MLP) and radial basis function network (RBF) are compared with the new neural network technique, Support Vector Machine(SVM). In this study the stock trend is defined...
Saved in:
主要作者: | Mohd Haris Lye Abdullah |
---|---|
格式: | Thesis |
出版: |
2003
|
主题: | |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Neural network based hybrid prediction models for healthcare applications
由: Purwanto,
出版: (2012) -
Protein Secondary Structure Prediction Using Ensemble Neural Networks With Local And Long-range Amino-acid Features
由: Hazzaa Mahyoub, Fawaz Hameed
出版: (2021) -
Temporal Based Network Intrusion Detection With Recurrent Neural Network And Random Forest
由: Lee, Nicholas Ming Ze
出版: (2019) -
Slow Fusion Triplanar Convolutional Neural Networks For Liver Tumor Segmentation
由: Chung, Sheng Hung
出版: (2022) -
Metaheuristic-Based Neural Network
Training And Feature Selector For
Intrusion Detection
由: Ghanem, Waheed Ali Hussein Mohammed
出版: (2019)