Brain Computer Interface Design Using Neural Network Classification of Autoregressive Models of Mental Task Electroencephalogram Signals.
Autoregressive(AR) feature extraction and neural network(NN) classification techniques are conducted using Electroencephalogram(EEG) signals extracted during mental tasks for Brain Computer Interface (BCI) design. The output of the BCI design could be used with a translation scheme such as Morse Cod...
Saved in:
主要作者: | |
---|---|
格式: | Thesis |
出版: |
2004
|
主題: | |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
id |
my-mmu-ep.131 |
---|---|
record_format |
uketd_dc |
spelling |
my-mmu-ep.1312010-02-17T08:39:39Z Brain Computer Interface Design Using Neural Network Classification of Autoregressive Models of Mental Task Electroencephalogram Signals. 2004 Huan, Nai Jen QA76.75-76.765 Computer software Autoregressive(AR) feature extraction and neural network(NN) classification techniques are conducted using Electroencephalogram(EEG) signals extracted during mental tasks for Brain Computer Interface (BCI) design. The output of the BCI design could be used with a translation scheme such as Morse Code; to move a cursor around a screen or to control the prosthesis only by using thoughts. This introduces an invaluable means for paralyzed individuals to communicate with their external surroundings. 2004 Thesis http://shdl.mmu.edu.my/131/ http://vlib.mmu.edu.my/diglib/login/dlusr/login.php masters Multimedia University Research Library |
institution |
Multimedia University |
collection |
MMU Institutional Repository |
topic |
QA76.75-76.765 Computer software |
spellingShingle |
QA76.75-76.765 Computer software Huan, Nai Jen Brain Computer Interface Design Using Neural Network Classification of Autoregressive Models of Mental Task Electroencephalogram Signals. |
description |
Autoregressive(AR) feature extraction and neural network(NN) classification techniques are conducted using Electroencephalogram(EEG) signals extracted during mental tasks for Brain Computer Interface (BCI) design. The output of the BCI design could be used with a translation scheme such as Morse Code; to move a cursor around a screen or to control the prosthesis only by using thoughts. This introduces an invaluable means for paralyzed individuals to communicate with their external surroundings. |
format |
Thesis |
qualification_level |
Master's degree |
author |
Huan, Nai Jen |
author_facet |
Huan, Nai Jen |
author_sort |
Huan, Nai Jen |
title |
Brain Computer Interface Design Using Neural Network Classification of Autoregressive Models of Mental Task Electroencephalogram Signals. |
title_short |
Brain Computer Interface Design Using Neural Network Classification of Autoregressive Models of Mental Task Electroencephalogram Signals. |
title_full |
Brain Computer Interface Design Using Neural Network Classification of Autoregressive Models of Mental Task Electroencephalogram Signals. |
title_fullStr |
Brain Computer Interface Design Using Neural Network Classification of Autoregressive Models of Mental Task Electroencephalogram Signals. |
title_full_unstemmed |
Brain Computer Interface Design Using Neural Network Classification of Autoregressive Models of Mental Task Electroencephalogram Signals. |
title_sort |
brain computer interface design using neural network classification of autoregressive models of mental task electroencephalogram signals. |
granting_institution |
Multimedia University |
granting_department |
Research Library |
publishDate |
2004 |
_version_ |
1747829089757036544 |