Structural Semantic Correspondence For Example-Based Machine Translation
The main key challenge in Machine Translation (MT) is to preserve the meaning from the original source sentence to the target translation. This remains the core problem in Machine Translation, which leads to a number of issues, such as: how to analyze the meaning of text, what information should be...
محفوظ في:
المؤلف الرئيسي: | Chua, Chong Chai |
---|---|
التنسيق: | أطروحة |
منشور في: |
2016
|
الموضوعات: | |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Analogical Learner For Natural Language Processing Based On Structured String-tree Correspondence (sstc) And
Case-based Reasoning
بواسطة: Lim, Huan Ngee
منشور في: (2009) -
A Mobile Learning Objects Compilation Framework Based On Semantic Web And Random Forest
بواسطة: Phillip, Rogers Bhalalusesa
منشور في: (2017) -
Finding Best Semantic Relatedness Functions For Schema Matchers
بواسطة: Emadzadeh, Ehsan
منشور في: (2010) -
Information Extraction Using Semantic Relation Learning And Greedy Mapping
بواسطة: Saravadee, Sae Tan
منشور في: (2016) -
Extraction and retrieval of vehicle semantics for long-term car park videos
بواسطة: Cheong, Clarence Weihan
منشور في: (2020)