Brain Computer Interface Design Using Neural Network Classification Of Autoregressive Models Of Mental Task Electroencephalogram Signals.
Autoregressive(AR) feature extraction and neural network(NN) classification techniques are conducted using Electroencephalogram(EEG) signals extracted during mental tasks for Brain Computer Interface (BCI) design. The output of the BCI design could be used with a translation scheme such as Morse Cod...
Saved in:
主要作者: | Huan , Nai Jen |
---|---|
格式: | Thesis |
出版: |
2004
|
主题: | |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Brain Computer Interface Design Using Neural Network Classification of Autoregressive Models of Mental Task Electroencephalogram Signals.
由: Huan, Nai Jen
出版: (2004) -
Kinetic gas molecule optimisation neural network for classification of electrocardiogram signals to identify heart disorder
由: Moein, Sara
出版: (2012) -
An Enhanced Probabilistic Neural Network For Pattern Classification
由: Chang, Roy Kwang Yang
出版: (2010) -
Grouping and deploying fine-grained tasks on grid by learning performance data
由: Muthuvelu, Nithiapidary
出版: (2011) -
The study of visual interface aesthetics in educational website Kansei engineering approach
由: Nur Faraha Hj. Mohd. Naim
出版: (2016)