Sentiment analysis using clonal selection algorithm for Twitter’s data / Fatimah Mamat

Twitter’s is a microblogging social networking website that has a large and rapidly growing user base. Thus, the website provides a rich bank of data in the form of “tweets”, which are short status update from Twitter’s user that must be written in 140 characters or less. As an increasingly popular...

全面介紹

Saved in:
書目詳細資料
主要作者: Mamat, Fatimah
格式: Thesis
語言:English
出版: 2012
主題:
在線閱讀:https://ir.uitm.edu.my/id/eprint/35379/1/35379.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
id my-uitm-ir.35379
record_format uketd_dc
spelling my-uitm-ir.353792020-10-20T07:05:58Z Sentiment analysis using clonal selection algorithm for Twitter’s data / Fatimah Mamat 2012 Mamat, Fatimah Fuzzy arithmetic Evolutionary programming (Computer science). Genetic algorithms Creative ability in technology Information technology. Information systems Twitter’s is a microblogging social networking website that has a large and rapidly growing user base. Thus, the website provides a rich bank of data in the form of “tweets”, which are short status update from Twitter’s user that must be written in 140 characters or less. As an increasingly popular platform for conveying opinions and thoughts, it seems natural to mine Twitter for potentially interesting trends regarding prominent topics in the news or popular culture. The sentiment analysis using clonal selection algorithm for twitter’s data system was developed to achieve the main objective which is to classify the twitter’s messages according three sentiments which are positive, negative and neutral. Clonal selection algorithm was used in this project because there are no researcher are focus on that technique for classify twitter’s data. This project can be used for marketing area because of the data was about review on I- phone. Nevertheless, it’s only accepts English standard word. In order to achieve the main objective, five phases of methodology was been implemented which are preliminary study, data preparation, model development, model evaluation & prototype development and last but not list is documentation. The evaluation conducted in this project has shown by accuracy is testing process. It used to check whether the data have been classifier correctly or incorrectly. Two experiments were carried out with different amount of data. At the first experiment, 200 data was used and the accuracy was 60 percent, while decrease data into 125 during experiment two, the accuracy was 56 percent only. 2012 Thesis https://ir.uitm.edu.my/id/eprint/35379/ https://ir.uitm.edu.my/id/eprint/35379/1/35379.pdf text en public degree Universiti Teknologi MARA, Terengganu Faculty of Computer & Mathematical Sciences Jantan, Prof Madya Dr Hamidah
institution Universiti Teknologi MARA
collection UiTM Institutional Repository
language English
advisor Jantan, Prof Madya Dr Hamidah
topic Fuzzy arithmetic
Fuzzy arithmetic
Creative ability in technology
Fuzzy arithmetic
spellingShingle Fuzzy arithmetic
Fuzzy arithmetic
Creative ability in technology
Fuzzy arithmetic
Mamat, Fatimah
Sentiment analysis using clonal selection algorithm for Twitter’s data / Fatimah Mamat
description Twitter’s is a microblogging social networking website that has a large and rapidly growing user base. Thus, the website provides a rich bank of data in the form of “tweets”, which are short status update from Twitter’s user that must be written in 140 characters or less. As an increasingly popular platform for conveying opinions and thoughts, it seems natural to mine Twitter for potentially interesting trends regarding prominent topics in the news or popular culture. The sentiment analysis using clonal selection algorithm for twitter’s data system was developed to achieve the main objective which is to classify the twitter’s messages according three sentiments which are positive, negative and neutral. Clonal selection algorithm was used in this project because there are no researcher are focus on that technique for classify twitter’s data. This project can be used for marketing area because of the data was about review on I- phone. Nevertheless, it’s only accepts English standard word. In order to achieve the main objective, five phases of methodology was been implemented which are preliminary study, data preparation, model development, model evaluation & prototype development and last but not list is documentation. The evaluation conducted in this project has shown by accuracy is testing process. It used to check whether the data have been classifier correctly or incorrectly. Two experiments were carried out with different amount of data. At the first experiment, 200 data was used and the accuracy was 60 percent, while decrease data into 125 during experiment two, the accuracy was 56 percent only.
format Thesis
qualification_level Bachelor degree
author Mamat, Fatimah
author_facet Mamat, Fatimah
author_sort Mamat, Fatimah
title Sentiment analysis using clonal selection algorithm for Twitter’s data / Fatimah Mamat
title_short Sentiment analysis using clonal selection algorithm for Twitter’s data / Fatimah Mamat
title_full Sentiment analysis using clonal selection algorithm for Twitter’s data / Fatimah Mamat
title_fullStr Sentiment analysis using clonal selection algorithm for Twitter’s data / Fatimah Mamat
title_full_unstemmed Sentiment analysis using clonal selection algorithm for Twitter’s data / Fatimah Mamat
title_sort sentiment analysis using clonal selection algorithm for twitter’s data / fatimah mamat
granting_institution Universiti Teknologi MARA, Terengganu
granting_department Faculty of Computer & Mathematical Sciences
publishDate 2012
url https://ir.uitm.edu.my/id/eprint/35379/1/35379.pdf
_version_ 1783734302180114432