Classification of parkinson's disease (pd) based on multilayer perceptrons (MLPs) neural network and anova as a feature extraction / Zahari Abu Bakar ... [et al.]

Parkinson’s disease (PD) is the second commonest late life neurodegenerative disease after Alzheimer’s disease. It is prevalent throughout the world and predominantly affects patients above 60 years old. It is caused by progressive degeneration of dopamine containing cells (neurons) within the deep...

Full description

Saved in:
Bibliographic Details
Main Authors: Abu Bakar, Zahari, Ibrahim, Nur Farahiah, Ispawi, Dzufi Iszura, Md. Tahir, Nooritawati
Format: Thesis
Language:English
Published: 2012
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/42965/1/42965.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Parkinson’s disease (PD) is the second commonest late life neurodegenerative disease after Alzheimer’s disease. It is prevalent throughout the world and predominantly affects patients above 60 years old. It is caused by progressive degeneration of dopamine containing cells (neurons) within the deep structures of the brain called the basal ganglia and substantia nigra. Therefore, accurate prediction of PD need to be done in order to assist medical or bio-informatics practitioners for initial diagnose of PD based on variety of test results. This paper described the analysis conducted based on two training algorithms namely Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG) of Multilayer Perceptrons (MLPs) Neural Network in diagnosing PD with Analysis of Variance (ANOVA) as a feature selection. The dataset information of this project has been taken from the Parkinson Disease Data Set. Results attained confirmed that the LM performed well with accuracy rate of above 90% before and after feature selection whilst SSG attained above 85% subsequent to implementation of ANOVA as feature selection.