Comparative analysis of K-Means and K-Medoids for clustering exam questions / Nurul Zafirah Mokhtar

Clustering has become more needed as a technique to cluster with intent to provide better grouping due to several problems. Clustering dynamic data is a challenge in identifying and forming groups. This unsupervised learning usually leads to undirected knowledge discovery. The cluster detection algo...

Full description

Saved in:
Bibliographic Details
Main Author: Mokhtar, Nurul Zafirah
Format: Thesis
Language:English
Published: 2016
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/55833/1/55833.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-uitm-ir.55833
record_format uketd_dc
spelling my-uitm-ir.558332024-05-24T07:41:15Z Comparative analysis of K-Means and K-Medoids for clustering exam questions / Nurul Zafirah Mokhtar 2016 Mokhtar, Nurul Zafirah Analysis Electronic Computers. Computer Science Algorithms Clustering has become more needed as a technique to cluster with intent to provide better grouping due to several problems. Clustering dynamic data is a challenge in identifying and forming groups. This unsupervised learning usually leads to undirected knowledge discovery. The cluster detection algorithm searches for clusters of data which are similar to one another by using similarity measures. Determining the suitable algorithm which can bring the optimized group clusters could be an issue. K-Means and k-Medoids are popular technique used in the world of clustering. Grouping an exam questions is a confusing tasks as it have to deal with the attributes and parameters of the data. Both techniques also may resulted in different outcomes. Depending on the parameters and attributes of the data, the results obtained from using both k-Means and k-Medoids could be varied. Each and every attribute and parameters selected undergo several process of data mining starting from pre-processing until the analysis of the data. The attributes and parameters that takes part in grouping the questions are marks, cognitive level and also the topics of the questions. Then the results is compared to determine which technique will produce higher accuracy results. This paper presents a comparative analysis of both algorithm in different data clusters to lay out strength and weaknesses of both. The grouping of an exam questions encompass low, medium and high level questions. Throughout the studies that conducted in determining the cluster, ITS570 course was used as a data and a set of cluster rules that hold the centroid and medoids value for both algorithm were produced at the end of this project for both techniques. The studies had found that k-Medoids produced higher accuracy result with 0.11% higher than k-Means. As a conclusion, with this type of data, k-Medoids algorithm had shown higher accuracy result rather than k-Means. 2016 Thesis https://ir.uitm.edu.my/id/eprint/55833/ https://ir.uitm.edu.my/id/eprint/55833/1/55833.pdf text en public degree Universiti Teknologi MARA Cawangan Melaka Faculty of Computer and Mathematical Sciences
institution Universiti Teknologi MARA
collection UiTM Institutional Repository
language English
topic Analysis
Analysis
Algorithms
spellingShingle Analysis
Analysis
Algorithms
Mokhtar, Nurul Zafirah
Comparative analysis of K-Means and K-Medoids for clustering exam questions / Nurul Zafirah Mokhtar
description Clustering has become more needed as a technique to cluster with intent to provide better grouping due to several problems. Clustering dynamic data is a challenge in identifying and forming groups. This unsupervised learning usually leads to undirected knowledge discovery. The cluster detection algorithm searches for clusters of data which are similar to one another by using similarity measures. Determining the suitable algorithm which can bring the optimized group clusters could be an issue. K-Means and k-Medoids are popular technique used in the world of clustering. Grouping an exam questions is a confusing tasks as it have to deal with the attributes and parameters of the data. Both techniques also may resulted in different outcomes. Depending on the parameters and attributes of the data, the results obtained from using both k-Means and k-Medoids could be varied. Each and every attribute and parameters selected undergo several process of data mining starting from pre-processing until the analysis of the data. The attributes and parameters that takes part in grouping the questions are marks, cognitive level and also the topics of the questions. Then the results is compared to determine which technique will produce higher accuracy results. This paper presents a comparative analysis of both algorithm in different data clusters to lay out strength and weaknesses of both. The grouping of an exam questions encompass low, medium and high level questions. Throughout the studies that conducted in determining the cluster, ITS570 course was used as a data and a set of cluster rules that hold the centroid and medoids value for both algorithm were produced at the end of this project for both techniques. The studies had found that k-Medoids produced higher accuracy result with 0.11% higher than k-Means. As a conclusion, with this type of data, k-Medoids algorithm had shown higher accuracy result rather than k-Means.
format Thesis
qualification_level Bachelor degree
author Mokhtar, Nurul Zafirah
author_facet Mokhtar, Nurul Zafirah
author_sort Mokhtar, Nurul Zafirah
title Comparative analysis of K-Means and K-Medoids for clustering exam questions / Nurul Zafirah Mokhtar
title_short Comparative analysis of K-Means and K-Medoids for clustering exam questions / Nurul Zafirah Mokhtar
title_full Comparative analysis of K-Means and K-Medoids for clustering exam questions / Nurul Zafirah Mokhtar
title_fullStr Comparative analysis of K-Means and K-Medoids for clustering exam questions / Nurul Zafirah Mokhtar
title_full_unstemmed Comparative analysis of K-Means and K-Medoids for clustering exam questions / Nurul Zafirah Mokhtar
title_sort comparative analysis of k-means and k-medoids for clustering exam questions / nurul zafirah mokhtar
granting_institution Universiti Teknologi MARA Cawangan Melaka
granting_department Faculty of Computer and Mathematical Sciences
publishDate 2016
url https://ir.uitm.edu.my/id/eprint/55833/1/55833.pdf
_version_ 1804889639265239040