Structural – electronic properties correlation of CdSe quantum dot solar cell using experimental and theoretical investigations

Solar cells are in focus for decades due to their capability to convert solar energy into electrical energy. Quantum dots sensitized solar cell (QDSC), in which the photovoltaic (PV) effect occurs at the interface between a quantum dot (QD) conjugated wide band gap metal oxide semiconductor (MOS) an...

Full description

Saved in:
Bibliographic Details
Main Author: Saifful Kamaluddin, Muzakir
Format: Thesis
Language:English
English
Published: 2015
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/10542/1/PSM11001%20SAIFFUL%20KAMALUDDIN%20MUZAKIR.pdf
http://umpir.ump.edu.my/id/eprint/10542/25/FIST%20-%20SAIFFUL%20KAMALUDDIN%20MUZAKIR.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-ump-ir.10542
record_format uketd_dc
institution Universiti Malaysia Pahang Al-Sultan Abdullah
collection UMPSA Institutional Repository
language English
English
topic QC Physics
spellingShingle QC Physics
Saifful Kamaluddin, Muzakir
Structural – electronic properties correlation of CdSe quantum dot solar cell using experimental and theoretical investigations
description Solar cells are in focus for decades due to their capability to convert solar energy into electrical energy. Quantum dots sensitized solar cell (QDSC), in which the photovoltaic (PV) effect occurs at the interface between a quantum dot (QD) conjugated wide band gap metal oxide semiconductor (MOS) and a redox electrolyte, gained much consideration due to their relatively simpler device structure and similarity to dye sensitized solar cell (DSSC), in which dye molecules replace QDs. The QDs are potentially having larger absorption cross-section, tuneable band edges, and atomic-like energy levels. These salient features make QDs capable of delivering more than one electron per single absorbed photon of sufficient energy, a phenomenon known as multi-exciton generation (MEG). The MEG effect makes QDSCs capable of achieving PV conversion efficiency (PCE) as high as 60% theoretically. Despite the remarkable feature of QDs as a light absorber, QDSCs deliver much inferior practical PCE (~8.6 %). Besides, they show inferior PCE compared to DSSCs (~13%). Therefore, this doctoral research aims to establish the structure-property correlation in QDSCs. A combination of experimental results and quantum chemical calculations under the framework of density functional theory (DFT) was employed for this purpose. In this approach, firstly CdSe QDs were synthesized using chemical methods and studied their structure and properties. Secondly realistic cluster models were empirically developed using DFT and experimental results. The structure-property correlation was established by comparing the experimental and theoretical results. The calculated absorption cross-section, band edges, band gaps, and emitting states of QDs with and without surface ligands were compared with that of RuL2(NCS)2.2H2O; L = 2,2’–bipyridyl-4,4’-dicarboxylic acid (N3) dye to correlate the capability of light absorption of QDs or dye molecules on the overall performance of device. This procedure was adopted to (i) understand the fundamental differences of electronic states in the bare QDs and the dye structures and (ii) evaluate electron channelling in QDs-ligand conjugate thus correlating with electron injection efficiency from QDs to MOS. Five parameters were concluded to have distinct effects on the PV properties of QDSCs. They are (i) emitting states of QDs, (ii) ligand usage, (iii) QDs size distribution, (iv) absorption cross-section, and (v) redox potential of electrolyte. The QDs–MOS conjugates were chemically developed and spectroscopically demonstrated efficient electron injection from QDs to MOS. However, such structures raised serious concerns on long term stability under operating conditions. This thesis finally propose future possible methodologies for stable and efficient QDSCs.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Saifful Kamaluddin, Muzakir
author_facet Saifful Kamaluddin, Muzakir
author_sort Saifful Kamaluddin, Muzakir
title Structural – electronic properties correlation of CdSe quantum dot solar cell using experimental and theoretical investigations
title_short Structural – electronic properties correlation of CdSe quantum dot solar cell using experimental and theoretical investigations
title_full Structural – electronic properties correlation of CdSe quantum dot solar cell using experimental and theoretical investigations
title_fullStr Structural – electronic properties correlation of CdSe quantum dot solar cell using experimental and theoretical investigations
title_full_unstemmed Structural – electronic properties correlation of CdSe quantum dot solar cell using experimental and theoretical investigations
title_sort structural – electronic properties correlation of cdse quantum dot solar cell using experimental and theoretical investigations
granting_institution Universiti Malaysia Pahang
granting_department Advanced Material
publishDate 2015
url http://umpir.ump.edu.my/id/eprint/10542/1/PSM11001%20SAIFFUL%20KAMALUDDIN%20MUZAKIR.pdf
http://umpir.ump.edu.my/id/eprint/10542/25/FIST%20-%20SAIFFUL%20KAMALUDDIN%20MUZAKIR.pdf
_version_ 1783731930381942784
spelling my-ump-ir.105422023-01-12T04:21:46Z Structural – electronic properties correlation of CdSe quantum dot solar cell using experimental and theoretical investigations 2015-03-02 Saifful Kamaluddin, Muzakir QC Physics Solar cells are in focus for decades due to their capability to convert solar energy into electrical energy. Quantum dots sensitized solar cell (QDSC), in which the photovoltaic (PV) effect occurs at the interface between a quantum dot (QD) conjugated wide band gap metal oxide semiconductor (MOS) and a redox electrolyte, gained much consideration due to their relatively simpler device structure and similarity to dye sensitized solar cell (DSSC), in which dye molecules replace QDs. The QDs are potentially having larger absorption cross-section, tuneable band edges, and atomic-like energy levels. These salient features make QDs capable of delivering more than one electron per single absorbed photon of sufficient energy, a phenomenon known as multi-exciton generation (MEG). The MEG effect makes QDSCs capable of achieving PV conversion efficiency (PCE) as high as 60% theoretically. Despite the remarkable feature of QDs as a light absorber, QDSCs deliver much inferior practical PCE (~8.6 %). Besides, they show inferior PCE compared to DSSCs (~13%). Therefore, this doctoral research aims to establish the structure-property correlation in QDSCs. A combination of experimental results and quantum chemical calculations under the framework of density functional theory (DFT) was employed for this purpose. In this approach, firstly CdSe QDs were synthesized using chemical methods and studied their structure and properties. Secondly realistic cluster models were empirically developed using DFT and experimental results. The structure-property correlation was established by comparing the experimental and theoretical results. The calculated absorption cross-section, band edges, band gaps, and emitting states of QDs with and without surface ligands were compared with that of RuL2(NCS)2.2H2O; L = 2,2’–bipyridyl-4,4’-dicarboxylic acid (N3) dye to correlate the capability of light absorption of QDs or dye molecules on the overall performance of device. This procedure was adopted to (i) understand the fundamental differences of electronic states in the bare QDs and the dye structures and (ii) evaluate electron channelling in QDs-ligand conjugate thus correlating with electron injection efficiency from QDs to MOS. Five parameters were concluded to have distinct effects on the PV properties of QDSCs. They are (i) emitting states of QDs, (ii) ligand usage, (iii) QDs size distribution, (iv) absorption cross-section, and (v) redox potential of electrolyte. The QDs–MOS conjugates were chemically developed and spectroscopically demonstrated efficient electron injection from QDs to MOS. However, such structures raised serious concerns on long term stability under operating conditions. This thesis finally propose future possible methodologies for stable and efficient QDSCs. 2015-03 Thesis http://umpir.ump.edu.my/id/eprint/10542/ http://umpir.ump.edu.my/id/eprint/10542/1/PSM11001%20SAIFFUL%20KAMALUDDIN%20MUZAKIR.pdf pdf en staffonly http://umpir.ump.edu.my/id/eprint/10542/25/FIST%20-%20SAIFFUL%20KAMALUDDIN%20MUZAKIR.pdf pdf en public phd doctoral Universiti Malaysia Pahang Advanced Material Universiti Malaysia Pahang Albero, J., Riente, P., Clifford, J.N., Pericàs, M.A. and Palomares, E. 2013. Improving CdSe quantum dot/polymer solar cell efficiency through the covalent functionalization of quantum dots: Implications in the device recombination kinetics. The Journal of Physical Chemistry C. 117(26): 13374-13381. Alivisatos, A.P. 1996a. Perspectives on the physical chemistry of semiconductor nanocrystals. The Journal of Physical Chemistry. 100:13226–13239. Alivisatos, A.P. 1996b. Semiconductor clusters,nanocrystals, and quantum dots. Science.271(5251): 933-937. Angelis, F.D., Fantacci, S., Selloni, A., Gratzel, M. and Nazeeruddin, M.K. 2007. Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. Nano Letters. 7: 3189-3195. Baik, M.-H. and Friesner, R.A. 2003. Computing redox potentials in solution: Density functional theory as a tool for rational design of redox agents. Journal of Physical Chemistry A. 106: 7407-7412. Barceló, I., Lana-Villarreal, T. and Gómez, R. 2011. Efficient sensitization of ZnO nanoporous films with CdSe QDs grown by Successive Ionic Layer Adsorption and Reaction (SILAR). Journal of Photochemistry and Photobiology A:Chemistry. 220: 47-53. Barnea-Nehoshtan, L., Kirmayer, S., Edri, E., Hodes, G. and Cahen, D. 2014. Surface photovoltage spectroscopy study of organo-lead perovskite solar cells. The Journal of Physical Chemistry Letters. 5(14): 2408-2413. Bawendi, M.G., Wilson, W.L., Rothberg, L., Carroll, P.J., Jedju, T.M., Steigerwald,M.L. and Brus, L.E. 1990. Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Physical Review Letters. 65(13): 1623-1626. Becker, M.A., Radich, J.G., Bunker, B.A. and Kamat, P.V. 2014. How does a SILAR CdSe film grow? Tuning the deposition steps to suppress interfacial charge recombination in solar cells. The Journal of Physical Chemistry Letters. 5(9):1575-1582. Becke, A. D. 1993. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics. 98(7): 5648-5652. Brown, P. and Kamat, P.V. 2008. Quantum dot solar cells. Electrophoretic deposition of CdSe−C60 composite films and capture of photogenerated electrons with nC60 cluster shell. Journal of the American Chemical Society. 130: 8890-8891. Brus, L.E. 1984. Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of Chemical Physics. 80(9): 4403-4409. Calzolari, A., Ruini, A. and Catellani, A. 2011. Anchor group versus conjugation:toward the gap-state engineering of functionalized ZnO (101̅0) surface for optoelectronic applications. Journal of the American Chemical Society. 133(15):5893-5899. Carlson, B., Leschkies, K., Aydil, E.S. and Zhu, X.Y. 2008. Valence band alignment at cadmium selenide quantum dot and zinc oxide (101̅0) interfaces. The Journal of Physical Chemistry C. 112(22): 8419-8423. Carlson, D.E., Wronski, C.R. and Pankove, J.I. 1977. Properties of amorphous silicon and a-Si Solar Cells. RCA Review. 38(2): 211–225. Chen, C., Ye, M., Lv, M., Gong, C., Guo, W. and Lin, C. 2014. Ultralong rutile TiO2 nanorod arrays with large surface area for CdS/CdSe quantum dot-sensitized solar cells. Electrochimica Acta. 121(0): 175-182. Chen, J., Li, C., Zhao, D.W., Lei, W., Zhang, Y., Cole, M.T., Chu, D.P., Wang, B.P., Cui, Y.P., Sun, X.W. and Milne, W.I. 2010. A quantum dot sensitized solar cell based on vertically aligned carbon nanotube templated ZnO arrays. Electrochemistry Communications. 12: 1432-1435. Chen, J., Wu, J., Lei, W., Song, J.L., Deng, W.Q. and Sun, X.W. 2010. Co-sensitized quantum dot solar cell based on ZnO nanowire. Applied Surface Science. 256: 7438-7441. Chen, J., Zhao, D.W., Song, J.L.,; Sun, X.W., Deng, W.Q., Liu, X.W. and Lei, W. 2009. Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells. Electrochemistry Communications. 11: 2265-2267. Chik, H. and Radiman, S. 2007. Phases characterization of sucrose ester 1670-heptanol-water system. Jurnal Fizik Malaysia. 26(1). Choi, H., Radich, J.G. and Kamat, P.V. 2013. Sequentially layered CdSe/CdS nanowire architecture for improved nanowire solar cell performance. The Journal of Physical Chemistry C. 118(1): 206-213. Choi, Y., Seol, M., Kim, W. and Yong, K. 2014. Chemical bath deposition of stoichiometric CdSe quantum dots for efficient quantum-dot-sensitized solar cell application. The Journal of Physical Chemistry C. 118(11): 5664-5670. Chong, L.-W., Chien, H.-T. and Lee, Y.-L. 2010. Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications. Journal of Power Sources. 195(15): 5109-5113. Chu, S. and Majumdar, A. 2012. Opportunities and challenges for a sustainable energy future. Nature. 488: 294 Davis, A.P. and Fry, A.J. 2010. Experimental and computed absolute redox potentials of polycyclic aromatic hydrocarbons are highly linearly correlated over a wide range of structures and potentials. Journal of Physical Chemistry A. 114: 12299- 12304. Deng, M., Zhang, Q., Huang, S.; Li, D., Luo, Y.; Shen, Q., Toyoda, T. and Meng, Q. 2010. Low-cost flexible nano-sulfide/carbon composite counter electrode for quantum-dot-sensitized solar cell. Nanoscale Research Letters. 5(6): 986-990. De Angelis, F., Fantacci, S., Mosconi, E., Nazeeruddin, M.K. and Grätzel, M. 2011. Absorption spectra and excited state energy levels of the N719 dye on TiO2 in dye-sensitized solar cell models. The Journal of Physical Chemistry C. 115(17): 8825-8831. De Angelis, F., Fantacci, S., Selloni, A., Grätzel, M. and Nazeeruddin, M.K. 2007a. Influence of the sensitizer adsorption mode on the open-circuit potential of dye- sensitized solar cells. Nano Letters. 7(10): 3189-3195. De Angelis, F., Fantacci, S., Selloni, A., Nazeeruddin, M.K. and Grätzel, M. 2007b. Time-dependent density functional theory investigations on the excited states of Ru(II)-dye-sensitized TiO2 nanoparticles: The role of sensitizer protonation. Journal of the American Chemical Society. 129(46): 14156-14157. De Mello Donegá, C., Hickey, S.G., Wuister, S.F., Vanmaekelbergh, D. and Meijerink, A. 2002. Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals. The Journal of Physical Chemistry B. 107(2): 489-496. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. and Ferrand, D. 2000. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 287(5455): 1019-1022. Dong, W. and Zhu, C. 2003. Optical properties of surface-modified Bi2O3 nanoparticles. Journal of Physics and Chemistry of Solids. 64(2): 265-271. Dukes, A.D., Schreuder, M.A., Sammons, J.A., McBride, J.R., Smith, N.J. and Rosenthal, S.J. 2008. Pinned emission from ultrasmall cadmium selenide nanocrystals. The Journal of Chemical Physics. 129(12). Efros, A.L. and Efros, A. 1982. Interband absorption of light in semiconductor sphere. Soviet Physics Semiconductor. 16: 772. Ekimov, A.I., Hache, F., Schanne-Klein, M.C., Ricard, D., Flytzanis, C., Kudryavtsev, I.A., Yazeva, T.V., Rodina, A.V. and Efros, A.L. 1994. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions: erratum. Journal of the Optical Society of America B. 11(3): 524-524. Etgar, L., Park, J., Barolo, C., Lesnyak, V., Panda, S.K., Quagliotto, P., Hickey, S.G., Nazeeruddin, M.K., Eychmüller, A., Viscardi, G. and Grätzel, M. 2012. Enhancing the efficiency of a dye sensitized solar cell due to the energy transfer between CdSe quantum dots and a designed squaraine dye. RSC Advances. 2 (7): 2748-2752. Fan, S.-Q., Kim, D., Kim, J.-J., Jung, D.W., Kang, S O. and Ko, J. 2009. Highly efficient CdSe quantum-dot-sensitized TiO2 photoelectrodes for solar cell applications. Electrochemistry Communications. 11(6): 1337-1339. Farrow, B. and Kamat, P.V. 2009. CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups. Journal of the American Chemical Society. 131(31): 11124-11131. Fischer, S.A., Crotty, A.M., Kilina, S.V., Ivanov, S.A. and Tretiak, S. 2012. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals. Nanoscale. 4(3): 904-914. Fontes Garcia, A., Fernandes, M., Coutinho, P. 2011. CdSe/TiO2 core-shell nanoparticles produced in AOT reverse micelles: Applications in pollutant photodegradation using visible light. Nanoscale Research Letters. 6(1): 426. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D. J. 2009. Gaussian 09, Revision B.01, Gaussian Inc., Wallingford, CT. Fuke, N., Hoch, L.B., Koposov, A.Y., Manner, V.W., Werder, D.J., Fukui, A., Koide, N., Katayama, H. and Sykora, M. 2010. CdSe quantum-dot-sensitized solar cell with ∼100% internal quantum efficiency. ACS Nano. 4: 6377-6386. Fung, D.D.S. and Choy, W.C.H. 2013. Organic Solar Cells. London: Springer London. Galbadini, S., Giuliani, G. and Robotti, N. 1992. Photoelectricity within classical physics: from the photocurrents of Edmond Becquerel to the first measure of the electron charge. 1st EPS Conference on History of Physics in Europe in the 19th and 20th Centuries. 42. Giménez, S., Mora-Seró, I., Macor, L., Guijarro, N., Lana-Villarreal, T., Gómez, R., Diguna, L. J., Shen, Q., Toyoda, T. and Bisquert, J. 2009. Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology. 20 (29): 295204. González-Pedro, V., Xu, X., Mora-Seró, I. and Bisquert, J. 2010. Modeling high- efficiency quantum dot sensitized solar cells. ACS Nano. 4(10): 5783-5790. Gratzel, M. 2001. Photoelectrochemical cells. Nature. 414: 338-344. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop E.D. 2013. Solar cell efficiency tables (version 41). Progress in Photovoltaics: Research and applications. 21: 1-11. Gregg, B.A. 2003a. Excitonic Solar Cells. The Journal of Physical Chemistry B. 107(20): 4688-4698. Gregg, B.A. and Hanna, M.C. 2003b. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. Journal of Applied Physics. 93(6): 3605-3614. Haiping, W., Xuemin, W., Fangfang, G., Mingjie, Z., Weidong, W. and Tiecheng, L. 2010. Density function study of H2 adsorption on LiB (0 1 0) surface. Physica B: Condensed Matter. 405(7): 1792-1795. Hai, H., Yang, F. and Li. J. 2013. Electrochemiluminescence sensor using quantum dots based on a G-quadruplex aptamer for the detection of Pb2+. RSC Advances. 13 (3): 13144-13148. Hammel, E., Tang, X., Trampert, M., Schmitt, T., Mauthner, K., Eder, A. and Potschke, P. 2004. Carbon nanofibers for composite applications. Carbon. 42: 1153-1158. Han, Y.-K., Jung, J., Cho, J.-J. and Kim, H.-J. 2003. Determination of the oxidation potentials of organic benzene derivatives: theory and experiment. Chemical Physics Letters. 368(5–6): 601-608. Hardin, B.E., Snaith, H.J. and McGehee, M.D. 2012. The renaissance of dye- sensitized solar cells. Nature Photonics. 6(3): 162-169. Hasobe, T., Fukuzumi, S. and Kamat, P.. 2006. Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angewandte Chemie International Edition. 45: 755-759. Hassan, Y., Chuang, C.-H., Kobayashi, Y., Coombs, N., Gorantla, S., Botton, G.A., Winnik, M.A., Burda, C. and Scholes, G.D. 2014. Synthesis and optical properties of linker-free TiO2/CdSe nanorods. The Journal of Physical Chemistry C. 118(6): 3347-3358. Hay, P.J. and Wadt, W.R. 1985. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics. 82(1): 270-283. Hoogland, S. 2008. The fuss about quantum dots. Photonics Spectra. 42(1): 80-87. Im, S. H., Lee, Y.H., Seok, S.I., Kim, S.W. and Kim, S.-W. 2010. Quantum-dot- sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition. Langmuir. 26: 18576-18580. Ip, A.H., Thon, S.M., Hoogland, S., Voznyy, O., Zhitomirsky, D., Debnath, R., Levina, L., Rollny, L.R., Carey, G.H., Fischer, A., Kemp, K.W., Kramer, I.J., Ning, Z., Labelle, A.J., Chou, K.W., Amassian, A. and Sargent, E.H. 2012. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology. 7:577–582. IUPAC. 1986. The absolute electrode potential: an explanatory note (Recommendations 1986). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 209: 417-428. Jean, J., Chang, S., Brown, P.R., Cheng, J.J., Rekemeyer, P.H., Bawendi, M.G., Gradečak, S., Bulović, V. 2013. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Advanced Materials. 25(20): 2790- 2796. Jin, H., Choi, S., Velu, R., Kim, S. and Lee, H.J. 2012. Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells. Langmuir. 28: 5417-5426. Jose, R., Kumar, A., Thavasi, V., Fujihara, K., Uchida, S. and Ramakrishna, S. 2008. Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells. Applied Physics Letters. 93(2): 023125. Jose, R., Zhanpeisov, N.U., Fukumura, H., Baba, Y. and Ishikawa, M. 2005. Structure−property correlation of cdse clusters using experimental results and first-principles DFT calculations. Journal of the American Chemical Society. 128(2): 629-636. Jose, R., Zhelev, Z., Bakalova, R., Baba, Y. and Ishikawa, M. 2006. White-light-emitting CdSe quantum dots synthesized at room temperature. Applied Physics Letters. 89(1). Jovanovski, V., González-Pedro, V., Giménez, S., Azaceta, E., Cabañero, G., Grande, H., Tena-Zaera, R., Mora-Seró, I. and Bisquert, J. 2011. A sulfide/polysulfide- based ionic liquid electrolyte for quantum dot-sensitized solar cells. Journal of the American Chemical Society. 133(50): 20156-20159. Kamat, P.V. 2006. Carbon nanomaterials: Building blocks in energy conversion devices. Interface. 15: 45-47. Kamat, P.V. 2006. Harvesting photons with carbon nanotubes. Nanotoday. 1: 20-27. Kashyout, A.B.; Soliman, H.M.A., Fathy, M., E.A. Gomaa and Zidan, A.A. 2012. CdSe quantum dots for solar cell devices. International Journal of Photoenergy. 2012: 1-7. Kasuya, A., Sivamohan, R., Barnakov, Y.A., Dmitruk, I.M., Nirasawa, T., Romanyuk, V.R., Kumar, V., Mamykin, S.V., Tohji, K., Jeyadevan, B., Shinoda, K., Kudo, T., Terasaki, O., Liu, Z., Belosludov, R.V., Sundararajan V., and Kawazoe, Y. 2004. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Materials. 3: 99-102. Kilina, S., Badaeva, E., Piryatinski, A., Tretiak, S., Saxena, A. and Bishop, A. R. 2009. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations. Physical Chemistry Chemical Physics. 11(21) :4113-4123. Klem, E.J.D., Gregory, C.W., Cunningham, G.B., Hall, S., Temple, D.S. and Lewis, J.S. 2012. Planar PbS quantum dot/C60 heterojunction photovoltaic devices with 5.2% power conversion efficiency. Applied Physics Letters. 100: 173109. Koch, W. and Holthausen, M. C. 2000. A chemist’s guide to density functional theory. 2nd ed. Germany: Wiley VCH. Komiya R, Fukui A, Murofushi N, Koide N, Yamanaka R, Katayama H. 2011. Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module. Technical Digest, 21st International Photovoltaic Science and Engineering Conference. Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M. and Kamat, P.V. 2008. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe−TiO2 architecture. Journal of the American Chemical Society. 130: 4007- 4015. Labat, F., Le Bahers, T., Ciofini, I. and Adamo, C. 2012. First-principles modeling of dye-sensitized solar cells: challenges and perspectives. Accounts of Chemical Research. 45(8): 1268-1277. Landes, C.F., Braun, M. and El-Sayed, M.A. 2001. On the nanoparticle to molecular size transition: Fluorescence quenching studies. Journal of Physical Chemistry B. 105: 10554-10558. Leatherdale, C.A., Woo, W.K., Mikulec, F.V. and Bawendi, M.G. 2002. On the absorption cross section of CdSe nanocrystal quantum dots. The Journal of Physical Chemistry B. 106(31): 7619-7622. Lee, C., Yang, W. and Parr, R.G. 1988. Development of the Colle-Salvetti correlation- energy formula into a functional of the electron density. Physical Review B. 37(2): 785-789. Lee, C.-P., Chen, P.-Y., Vittal, R. and Ho, K.-C. 2010. Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black. Journal of Materials Chemistry. 20(12): 2356-2361. Lee, H., Wang, M., Chen, P., Gamelin, D.R., Zakeeruddin, S.M., Grätzel, M. and Nazeeruddin, M.K. 2009. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.Nano Letters. 9(12): 4221-4227. Lee, H.J., Kim, D.-Y., Yoo, J.-S., Bang, J., Kim, S. and Park, S.-M. 2007. Anchoring cadmium chalcogenide quantum dots (QDs) onto stable oxide semiconductors for QD sensitized solar cells. Bulletin of the Korean Chemical Society. 28: 953-958. Lee, H.J., Yum, J.-H., Leventis, H.C., Zakeeruddin, S.M., Haque, S.A., Chen, P., Seok, S.I., Grätzel, M. and Nazeeruddin, M.K. 2008. CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. The Journal of Physical Chemistry C. 112(30): 11600-11608. Lee, W., Kwak, W.-C., Min, S.K., Lee, J.-C., Chae, W.-S., Sung, Y.-M. and Han, S.-H.2008. Spectral broadening in quantum dots-sensitized photoelectrochemical solar cells based on CdSe and Mg-doped CdSe nanocrystals. Electrochemistry Communications. 10: 1699-1702. Leschkies, K.S., Divakar, R., Basu, J., Enache-Pommer, E., Boercker, J.E., Carter, C.B., Kortshagen, U.R., Norris, D.J. and Aydil, E.S. 2007. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Letters. 7(6): 1793-1798. Lewis, N.S. 2007. Toward cost-effective solar energy use. Science. 315(5813): 798-801. Li, J. and Zhu, J.-J. 2013. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst. 138(9): 2506-2515. Liu, D. and Kamat, P.V. 1993. Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films. The Journal of Physical Chemistry. 97: 10769-10773. Liu, F., Zhu, J., Wei, J.,; Li, Y., Hu, L., Huang, Y., Takuya, O., Shen, Q., Toyoda, T., Zhang, B., Yao, J. and Dai, S. 2013. Ex situ CdSe quantum dot-sensitized solar cells employing inorganic ligand exchange to boost efficiency. The Journal of Physical Chemistry C. 118(1): 214-222. Liu, L., Wang, G., Li, Y., Li, Y. and Zhang, J. 2011. CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Research. 4: 249-258. Liu, S.-H., Fu, H., Cheng, Y.-M., Wu, K.-L., Ho, S.-T., Chi, Y. and Chou, P.-T. 2012. Theoretical study of N749 dyes anchoring on the (TiO2)28 surface in DSSCs and their electronic absorption properties. The Journal of Physical Chemistry C.116(31): 16338-16345. Lopez-Luke, T., Wolcott, A., Xu, L.-p., Chen, S., Wen, Z., Li, J., De La Rosa, E. and Zhang, J.Z. 2008. Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystalline TiO2 films for solar energy conversion applications. The Journal of Physical Chemistry C. 112: 1282-1292. Luque, A., Martí, A., Nozik, A. J. 2007. Solar cells based on quantum dots: Multiple exciton generation and intermediate bands. MRS Bulletin. 32: 236-241. Markus, T.Z., Itzhakov, S., Alkotzer, Y.I., Cahen, D., Hodes, G., Oron, D. and Naaman, R. 2011. Energetics of CdSe quantum dots adsorbed on TiO2. The Journal of Physical Chemistry C. 115(27): 13236-13241. Masumdar, E.U. and Deshmukh, L.P. 2003. Photoelectrochemical properties of CdSe:Sb thin film based solar cells: Influence of electrode thickness. Turkish Journal of Physics. 27: 271-278. Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M.K. and Gratzel, M. 2014. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizer. Nature Chemistry. 6: 242-247. Mishra, S., Tiwari, S. and Chandra, B.P. 1994. Influence of surface treatments on CdSe thin films in photoelectro-chemical solar energy conversion. Bulletin of Materials Science. 17(4): 429-437. Mora-Seró, I., Giménez, S., Fabregat-Santiago, F., Gómez, R., Shen, Q., Toyoda, T. and Bisquert, J. 2009. Recombination in quantum dot sensitized solar cells. Accounts of Chemical Research. 42: 1848-1857. Mora-Seró, I., Giménez, S., Moehl, T., Fabregat-Santiago, F., Lana-Villareal, T.,Gómez, R. and Bisquert, J. 2008. Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: The role of the linker molecule and of the counter electrode. Nanotechnology. 19: 424007. Murphy, J.E., Beard, M.C., Norman, A.G., Ahrenkiel, S.P., Johnson, J.C., Yu, P.,Micic, O.I., Ellingson, R.J. and Nozik, A.J. 2006. PbTe colloidal nanocrystals:Synthesis, characterization, and multiple exciton generation. Journal of the American Chemical Society. 128(10): 3241-3247. Nanda, J., Ivanov, S.A., Htoon, H., Bezel, I., Piryatinski, A., Tretiak, S. and Klimov, V.I. 2006. Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance. Journal of Applied Physics. 99(3). Nasr, C., Kamat, P.V. and Hotchandani, S. 1997. Photoelectrochemical behavior of coupled SnO2|CdSe nanocrystalline semiconductor films. Journal of Electroanalytical Chemistry. 420: 201-207. Nazeeruddin, M.K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B. and Grätzel, M. 2005. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell Ruthenium sensitizers. Journal of the American Chemical Society. 127(48): 16835-16847. Neale, N.R., Kopidakis, N., van de Lagemaat, J., Grätzel, M. and Frank, A.J. 2005. Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells:  shielding versus band-edge movement. The Journal of Physical Chemistry B. 109(49): 23183-23189. Nguyen, H.M., Nguyen, D.N. and Kim, N. 2010. Improved performance of dye- sensitized solar cells by tuning the properties of ruthenium complexes containing conjugated bipyridine ligands. Advances in Natural Sciences: Nanoscience and Nanotechnology. 1: 025001. Niitsoo, O., Sarkar, S.K., Pejoux, C., Rühle, S., Cahen, D. and Hodes, G. 2006. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry. 181: 306-313. Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., petrozza, a., Herz, L. and Snaith, H. 2014. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science. Nozik, A.J. 2001. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annual Review of Physical Chemistry. 52(1):193-231. Nozik, A.J. 2002. Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures. 14(1–2): 115-120. Nozik, A.J. 2006. Nanostructured Materials for solar energy conversion. Tetsuo, S. Amsterdam: Elsevier. Nozik, A.J. 2008. Multiple exciton generation in semiconductor quantum dots. Chemical Physics Letters. 457: 3-11. O’Regan, B. and Grätzel, M. 1991. A low cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature. 353: 737-740. O'Neil, M., Marohn, J. and McLendon, G. 1990. Dynamics of electron-hole pair recombination in semiconductor clusters. The Journal of Physical Chemistry. 94(10): 4356-4363. Ong, S.P. and Ceder, G. 2010. Investigation of the effect of functional group substitutions on the gas-phase electron affinities and ionization energies of room-temperature ionic liquids ions using density functional theory. Electrochimica Acta. 55(11): 3804-3811. Osborne, S.W., Blood, P., Smowton, P.M., Xin, Y.C., Stintz, A., Huffaker, D. and Lester, L.F. 2004. Optical absorption cross section of quantum dots. Journal of Physics: Condensed Matter. 16(35): S3749. Pandey, R.K., Mishra, S., Tiwari, S., Sahu, P. and Chandra, B.P. 2000. Comparative study of performance of CdTe, CdSe and CdS thin films-based photoelectrochemical solar cells. Solar Energy Materials and Solar Cells. 60: 59-72. Park, S., Seo, Y., Kim, M.S. and Lee, S. 2013. Solar energy conversion by the regular array of TiO2 nanotubes anchored with ZnS/CdSSe/CdS quantum dots formed by sequential ionic bath deposition. Bulletin of the Korean Chemical Society. 34 (3): 856-862. Pernik, D.R., Tvrdy, K., Radich, J.G. and Kamat, P.V. 2011. Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: Linked versus direct attachment. The Journal of Physical Chemistry C. 115(27): 13511-13519. Puzder, A., Williamson, A. J., Gygi, F. and Galli, G. 2004. Self-healing of CdSe nanocrystals: First-principles calculations. Physical Review Letters. 92: 217401. Rabinovich, E. and Hodes, G. 2013. Effective bandgap lowering of CdS deposited by successive ionic layer adsorption and reaction. 2013. The Journal of Physical Chemistry C. 117(4): 1611-1620. Rajesh, B., Thampi, K.R., Bonard, J. M., Mathieu, H.J., Xanthopoulos, N. and Viswanathan, B. 2003. Conducting polymeric nanotubules as high performance methanol oxidation catalyst support. Chemical Communications. 2022-2023. Ramanathan, K., Contreras, M. A. and Perkins, C. L. 2003. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications. 11: 225. Ramrakhiani, M. 1995. Zinc doped polycrystalline CdSe films for solar energy conversion. Materials Science and Engineering B. 35(1-3): 493-496. Robel, I., Kuno, M. and Kamat, P.V. 2007. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. Journal of the American Chemical Society. 129(14): 4136-4137. Robel, I., Subramanian, V., Kuno, M. and Kamat, P. V. 2006. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society. 128(7): 2385-2393. Rogers, E.I., Silvester, D.S., Aldous, L., Hardacre, C. and Compton, R.G. 2008. Electrooxidation of the iodides [C4mim]I, LiI, NaI, KI, RbI, and CsI in the room temperature ionic liquid [C4mim][NTf2]. The Journal of Physical Chemistry C. 112(16): 6551-6557. Rühle, S., Shalom, M. and Zaban, A. 2010. Quantum-dot-sensitized solar cell. A European Journal of Chemical Physics and Physical Chemistry. 11(11): 2290-2304. Ryu, S., Noh, J.H., Jeon, N.J., Chan Kim, Y., Yang, W.S., Seo, J. and Seok, S.I. 2014. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy & Environmental Science. Scalmani, G., Frisch, M.J., Mennucci, B., Tomasi, J., Cammi, R. and Barone, V. 2006. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. The Journal of Chemical Physics. 124(9): 94- 107. Shah, A.V., Schade, H., Vanecek, M., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C. and Bailat, J. 2004. Thin-film silicon solar cell technology.Progress in Photovoltaics: Research and Applications. 12: 113-142. Shengyuan, Y., Nair, A.S., Jose, R. and Ramakrishna, S. 2010. Electrospun TiO2 nanorods assembly sensitized by CdS quantum dots: A low-cost photovoltaic material. Energy & Environmental Science. 3(12): 2010-2014. Shrestha, S. 2011. Progress in Photovoltaics: Research and Applications. 19(6), 754- 756. Shockley, W. and Queisser, H.J. 1961. Detailed balance limit of efficiency of p-n junction solar cells, Journal of Applied Physics. 32(3): 510-519. Sorianello, V., Colace, L., Maragliano, C., Fulgoni, D., Nash, L and Assanto, Gaetano.2013. Germanium-on-glass solar cells: Fabrication and characterization. Optical Material Express. 2(3): 216-228. Stergiopoulos, T., Rozi, E., Karagianni, C.S. and Falaras, P. 2011. Influence of electrolyte co-additives on the performance of dye-sensitized solar cells. Nanoscale Research Letters. 6(1): 307. Su, Y., Lu, X., Xie, M., Geng, H., Wei, H., Yang, Z. and Zhang, Y. 2013. A one-pot synthesis of reduced graphene oxide-Cu2S quantum dot hybrids for optoelectronic devices. Nanoscale. 5(19): 8889-8893. Sudhagar, P., Jung, J.H., Park, S., Lee, Y.-G., Sathyamoorthy, R., Kang, Y.S. and Ahn, H. 2009. The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells. Electrochemistry Communications. 11: 2220-2224. Sun, X.W., Chen, J., Song, J.L., Zhao, D.W., Deng, W.Q. and Lei, W. 2010. Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode. Optic Express. 18(2): 1296-1301. Tvrdy, K., Frantsuzov, P. A. and Kamat, P. V. 2011. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proceedings of the National Academy of Sciences. 108: 29-34. Verma, S. and Ghosh, H. N. 2012. Exciton energy and charge transfer in porphyrin aggregate/semiconductor (TiO2) composites. The Journal of Physical Chemistry Letters. 3(14): 1877-1884. Vogel, R., Pohl, K. and Weller, H. 1990. Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS. Chemical Physics Letters. 174 (3-4): 241-246. Wallentin, J., Anttu, N., Asoli, D., Huffman, M., Åberg, I., Magnusson, M.H., Siefer, G., Fuss-Kailuweit, P., Dimroth, F., Witzigmann, B., Xu, H.Q., Samuelson, L., Deppert, K. and Borgström, M.T. 2013. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science. 339 (6123): 1057-1060. Wang, J., Deo, R.P., Poulin, P. and Mangey, M. 2003. Carbon nanotube fiber microelectrodes. Journal of American Chemical Society. 125: 14706-14707. Wang, Y. and Herron, N. 1991. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. The Journal of Physical Chemistry. 95(2): 525-532. Wu, K.-L., Li, C.-H., Chi, Y., Clifford, J.N., Cabau, L., Palomares, E., Cheng, Y.-M., Pan, H.-A. and Chou, P.-T. 2012. Dye molecular structure device open-circuit voltage correlation in Ru(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Journal of the American Chemical Society. 134(17): 7488-7496. Xu, Y.-N. and Ching, W.Y. 1993. Electronic, optical, and structural properties of some wurtzite crystals. Physical Review B. 48(7): 4335-4351. Yan, K., Chen, W. and Yang, S. Significantly enhanced open circuit voltage and fill factor of quantum dot sensitized solar cells by linker seeding chemical bath deposition. 2012. The Journal of Physical Chemistry C. 117(1): 92-99. Yella, A., Lee, H.-W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Wei-Guang Diau, E., Yeh, C.-Y., Zakeeruddin, S.M. and Grätzel, M. 2011. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science. November: 4. Yu, P., Beard, M.C., Ellingson, R.J., Ferrere, S., Curtis, C., Drexler, J., Luiszer, F. and Nozik, A.J. 2005. Absorption cross-section and related optical properties of colloidal InAs quantum dots. The Journal of Physical Chemistry B. 109(15):7084-7087. Yu, W. W., Qu, L., Guo, W. and Peng, X. 2003. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials. 15(14): 2854-2860. Yu, W. W., Wang, Y. A. and Peng, X. 2003. Formation and stability of size-, shape-,and structure-controlled CdTe nanocrystals:  Ligand effects on monomers and nanocrystals. Chemistry of Materials. 15 (22), 4300-4308. Yu, X.-Y., Liao, J.-Y., Qiu, K.-Q., Kuang, D.-B. and Su, C.-Y. 2011. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. ACS Nano. 5(12): 9494-9500. Zhang, J.-Y., Wang, X.-Y., Xiao, M., Qu, L. and Peng, X. 2002. Lattice contraction in free-standing CdSe nanocrystals. Applied Physics Letters. 81(11): 2076-2078. Zhang, Z., Yu, Y. and Wang, P. 2012. Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants. ACS Applied Materials & Interfaces. 4(2): 990-996. Zhanpeisov, N.U. and Anpo, M. 2004. Hydrogen bonding versus coordination of adsorbate molecules on Ti-silicalites:  A density functional theory study. Journal of the American Chemical Society. 126(30): 9439-9444. Zhao, F., Tang, G., Zhang, J. and Lin, Y. 2012. Improved performance of CdSe quantum dot-sensitized TiO2 thin film by surface treatment with TiCl4. Electrochimica Acta. 62: 396-401.