Intergrated multi-objective optimisation of assembly sequence planning and assembly line balancing using particle swarm optimisation

In assembly optimisation, Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) optimisations currently performed in serial, present an opportunity for integration, allowing benefits such as larger search space leading to better solution quality, reduced error rate in planning and fast...

Full description

Saved in:
Bibliographic Details
Main Author: M. F. F., Ab Rashid
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/13473/1/MOHD%20FADZIL%20FAISAE%20AB%20RASHID.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-ump-ir.13473
record_format uketd_dc
spelling my-ump-ir.134732021-08-19T05:32:01Z Intergrated multi-objective optimisation of assembly sequence planning and assembly line balancing using particle swarm optimisation 2013 M. F. F., Ab Rashid QA Mathematics QC Physics In assembly optimisation, Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) optimisations currently performed in serial, present an opportunity for integration, allowing benefits such as larger search space leading to better solution quality, reduced error rate in planning and fast time-tomarket for a product. The literature survey highlights the research gaps, where the existing integrated ASP and ALB optimisation is limited to a Genetic Algorithm (GA) based approach, while Particle Swarm Optimisation (PSO) demonstrates better performance in individual ASP and ALB optimization compared to GA In addition, the existing works are limited to simple assembly line problems which run a homogeneous model on an assembly line. The aim of this research is to establish a methodology and algorithm for integrating ASP and ALB optimisation using Particle Swarm Optimisation. This research extends the problem type to integrated mixed-model ASP and ALB in order to generalize the problem. This research proposes Multi-Objective Discrete Particle Swarm Optimisation (MODPSO), to optimise integrated ASP and ALB. The MODPSO uses the Pareto-based approach to deal with the multi-objective problem and adopts a discrete procedure instead of standard mathematical operators to update its position and velocity. The MODPSO algorithm is tested with a wide range of problem difficulties for integrated single-model and mixed-model ASP and ALB problems. In order to supply sufficient test problems that cover a range of problem difficulties, a tuneable test problem generator is developed. Statistical tests on the algorithms' performance indicates that the proposed MODPSO algorithm presents significant improvement in terms of larger nondominated solution numbers in Pare't o optimal, compared to comparable algorithms including GA based algorithms in both single-model and mixedmodel ASP and ALB problems. The performance of the MODPSO algorithm is finally validated using artificial problems from the literature and real-world problems from assembly products. 2013 Thesis http://umpir.ump.edu.my/id/eprint/13473/ http://umpir.ump.edu.my/id/eprint/13473/1/MOHD%20FADZIL%20FAISAE%20AB%20RASHID.pdf application/pdf en public phd doctoral University of Cranfield Faculty of Industrial Sciences and Technology
institution Universiti Malaysia Pahang Al-Sultan Abdullah
collection UMPSA Institutional Repository
language English
topic QA Mathematics
QC Physics
spellingShingle QA Mathematics
QC Physics
M. F. F., Ab Rashid
Intergrated multi-objective optimisation of assembly sequence planning and assembly line balancing using particle swarm optimisation
description In assembly optimisation, Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) optimisations currently performed in serial, present an opportunity for integration, allowing benefits such as larger search space leading to better solution quality, reduced error rate in planning and fast time-tomarket for a product. The literature survey highlights the research gaps, where the existing integrated ASP and ALB optimisation is limited to a Genetic Algorithm (GA) based approach, while Particle Swarm Optimisation (PSO) demonstrates better performance in individual ASP and ALB optimization compared to GA In addition, the existing works are limited to simple assembly line problems which run a homogeneous model on an assembly line. The aim of this research is to establish a methodology and algorithm for integrating ASP and ALB optimisation using Particle Swarm Optimisation. This research extends the problem type to integrated mixed-model ASP and ALB in order to generalize the problem. This research proposes Multi-Objective Discrete Particle Swarm Optimisation (MODPSO), to optimise integrated ASP and ALB. The MODPSO uses the Pareto-based approach to deal with the multi-objective problem and adopts a discrete procedure instead of standard mathematical operators to update its position and velocity. The MODPSO algorithm is tested with a wide range of problem difficulties for integrated single-model and mixed-model ASP and ALB problems. In order to supply sufficient test problems that cover a range of problem difficulties, a tuneable test problem generator is developed. Statistical tests on the algorithms' performance indicates that the proposed MODPSO algorithm presents significant improvement in terms of larger nondominated solution numbers in Pare't o optimal, compared to comparable algorithms including GA based algorithms in both single-model and mixedmodel ASP and ALB problems. The performance of the MODPSO algorithm is finally validated using artificial problems from the literature and real-world problems from assembly products.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author M. F. F., Ab Rashid
author_facet M. F. F., Ab Rashid
author_sort M. F. F., Ab Rashid
title Intergrated multi-objective optimisation of assembly sequence planning and assembly line balancing using particle swarm optimisation
title_short Intergrated multi-objective optimisation of assembly sequence planning and assembly line balancing using particle swarm optimisation
title_full Intergrated multi-objective optimisation of assembly sequence planning and assembly line balancing using particle swarm optimisation
title_fullStr Intergrated multi-objective optimisation of assembly sequence planning and assembly line balancing using particle swarm optimisation
title_full_unstemmed Intergrated multi-objective optimisation of assembly sequence planning and assembly line balancing using particle swarm optimisation
title_sort intergrated multi-objective optimisation of assembly sequence planning and assembly line balancing using particle swarm optimisation
granting_institution University of Cranfield
granting_department Faculty of Industrial Sciences and Technology
publishDate 2013
url http://umpir.ump.edu.my/id/eprint/13473/1/MOHD%20FADZIL%20FAISAE%20AB%20RASHID.pdf
_version_ 1783731984276652032