Flexible enhanced fuzzy min–max neural network model for pattern classification problems
In the attempts of building an efficient classifier model, various hybrid computational intelligence models have been introduced. Among these, the enhanced fuzzy min-max (EFMM) model was one of the most recent models coming with many essential features like the ability to provide online learning pro...
محفوظ في:
المؤلف الرئيسي: | Al-Hroob, Essam Muslem Harb |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://umpir.ump.edu.my/id/eprint/30400/1/Flexible%20enhanced%20fuzzy%20min%E2%80%93max%20neural%20network%20model.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
An Enhanced Probabilistic Neural Network For Pattern Classification
بواسطة: Chang, Roy Kwang Yang
منشور في: (2010) -
A framework of integrated continuous online learner with fuzzy neural network application in learning environment
بواسطة: Sadikan, Siti Fairuz Nurr
منشور في: (2021) -
An improved bat algorithm with artificial neural networks for classification problems
بواسطة: Rehman Gillani, Syed Muhammad Zubair
منشور في: (2016) -
Improvement of fuzzy neural network using mine blast algorithm for classification of Malaysian Small Medium Enterprises based on strength
بواسطة: Hussain Talpur, Kashif
منشور في: (2015) -
Enhanced Adaptive Neuro-Fuzzy Inference System Classification Method for Intrusion Detection
بواسطة: Jia, Liu
منشور في: (2024)