Modeling and performance enhancements of a gas turbine combined cycle power plant

This thesis deals with modelling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of green environment. These requirements given way the long time governing authority of steam turbine (ST) in the wor...

Full description

Saved in:
Bibliographic Details
Main Author: Thamir Khalil, Ibrahim
Format: Thesis
Language:English
Published: 2012
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/3497/1/Modeling%20and%20performance%20enhancements%20of%20a%20gas%20turbine%20combined%20cycle%20power%20plant.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-ump-ir.3497
record_format uketd_dc
spelling my-ump-ir.34972023-05-17T03:42:18Z Modeling and performance enhancements of a gas turbine combined cycle power plant 2012-09 Thamir Khalil, Ibrahim TK Electrical engineering. Electronics Nuclear engineering This thesis deals with modelling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of green environment. These requirements given way the long time governing authority of steam turbine (ST) in the world power generation, and gas turbine (GT) and its combined cycle (CCGT) will replace it. Therefore, it is necessary to predict the characteristics of the CCGT system and optimize its operating strategy by developing a simulation system. Several configurations of the GT and CCGT plants systems are proposed by thermal analysis. The integrated model and simulation code for exploiting the performance of gas turbine and CCGT power plant are developed utilizing MATLAB code. New strategies for GT and CCGT power plant's operational modelling and optimizations are suggested for power plant operation, to improve overall performance. The effect of various enhancing strategies on the performance of the CCGT power plant (two-shaft, intercooler, regenerative, reheat, and multi-pressure heat recovery steam generator (HRSG)) based on the real GT and CCGT power plants. An extensive thermodynamic analysis of the modifications of the most common configuration's enhancements has been carried out. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. The simulating results show that the reheated GT has a higher power (388MW) while the higher thermal efficiency occurs in the regenerative GT (52%) with optimal pressure ratio and turbine inlet temperature. The performance enhancing strategies results show that the higher power output occurs in the intercooler-reheat GT strategy (404MW). Furthermore, the higher thermal efficiency (56.9%) and lower fuel consumption (0.13kg/kWh) occur in the intercooler-regenerative-reheat GT strategy. The analyses of the HRSG configurations show that the maximum power output (1238MW) occurred in the supplementary triple pressure with reheat CCGT while the overall efficiency was about 56.6%. The intercooler-reheat CCGT strategy has higher power output (1637MW) and the higher overall thermal efficiency (59.4%) and lower fuel consumption (0.047kg/kWh) occur with the regenerative-reheat CCGT strategy. The simulation result shows that the proposed GT system improved 19% of thermal efficiency and 22% of power output. In addition, the proposed CCGT system improved 4.6% of thermal efficiency for and 22.5% of power output. The optimization result shows that the optimum power (1280MW) and the overall thermal efficiency (65%) of the supplementary triple pressure with reheat CCGT. Therefore, the optimization procedure is reasonably accurate and efficient. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT and CCGT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the CCGT plants. The energy and exergy analysis models for the GT and CCGT plants are highly recommended for predicting them performance based on inlet air cooling system. 2012-09 Thesis http://umpir.ump.edu.my/id/eprint/3497/ http://umpir.ump.edu.my/id/eprint/3497/1/Modeling%20and%20performance%20enhancements%20of%20a%20gas%20turbine%20combined%20cycle%20power%20plant.pdf pdf en public phd doctoral Universiti Malaysia Pahang Faculty of Mechanical Engineering Md. Mustafizur, Rahman
institution Universiti Malaysia Pahang Al-Sultan Abdullah
collection UMPSA Institutional Repository
language English
advisor Md. Mustafizur, Rahman
topic TK Electrical engineering
Electronics Nuclear engineering
spellingShingle TK Electrical engineering
Electronics Nuclear engineering
Thamir Khalil, Ibrahim
Modeling and performance enhancements of a gas turbine combined cycle power plant
description This thesis deals with modelling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of green environment. These requirements given way the long time governing authority of steam turbine (ST) in the world power generation, and gas turbine (GT) and its combined cycle (CCGT) will replace it. Therefore, it is necessary to predict the characteristics of the CCGT system and optimize its operating strategy by developing a simulation system. Several configurations of the GT and CCGT plants systems are proposed by thermal analysis. The integrated model and simulation code for exploiting the performance of gas turbine and CCGT power plant are developed utilizing MATLAB code. New strategies for GT and CCGT power plant's operational modelling and optimizations are suggested for power plant operation, to improve overall performance. The effect of various enhancing strategies on the performance of the CCGT power plant (two-shaft, intercooler, regenerative, reheat, and multi-pressure heat recovery steam generator (HRSG)) based on the real GT and CCGT power plants. An extensive thermodynamic analysis of the modifications of the most common configuration's enhancements has been carried out. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. The simulating results show that the reheated GT has a higher power (388MW) while the higher thermal efficiency occurs in the regenerative GT (52%) with optimal pressure ratio and turbine inlet temperature. The performance enhancing strategies results show that the higher power output occurs in the intercooler-reheat GT strategy (404MW). Furthermore, the higher thermal efficiency (56.9%) and lower fuel consumption (0.13kg/kWh) occur in the intercooler-regenerative-reheat GT strategy. The analyses of the HRSG configurations show that the maximum power output (1238MW) occurred in the supplementary triple pressure with reheat CCGT while the overall efficiency was about 56.6%. The intercooler-reheat CCGT strategy has higher power output (1637MW) and the higher overall thermal efficiency (59.4%) and lower fuel consumption (0.047kg/kWh) occur with the regenerative-reheat CCGT strategy. The simulation result shows that the proposed GT system improved 19% of thermal efficiency and 22% of power output. In addition, the proposed CCGT system improved 4.6% of thermal efficiency for and 22.5% of power output. The optimization result shows that the optimum power (1280MW) and the overall thermal efficiency (65%) of the supplementary triple pressure with reheat CCGT. Therefore, the optimization procedure is reasonably accurate and efficient. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT and CCGT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the CCGT plants. The energy and exergy analysis models for the GT and CCGT plants are highly recommended for predicting them performance based on inlet air cooling system.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Thamir Khalil, Ibrahim
author_facet Thamir Khalil, Ibrahim
author_sort Thamir Khalil, Ibrahim
title Modeling and performance enhancements of a gas turbine combined cycle power plant
title_short Modeling and performance enhancements of a gas turbine combined cycle power plant
title_full Modeling and performance enhancements of a gas turbine combined cycle power plant
title_fullStr Modeling and performance enhancements of a gas turbine combined cycle power plant
title_full_unstemmed Modeling and performance enhancements of a gas turbine combined cycle power plant
title_sort modeling and performance enhancements of a gas turbine combined cycle power plant
granting_institution Universiti Malaysia Pahang
granting_department Faculty of Mechanical Engineering
publishDate 2012
url http://umpir.ump.edu.my/id/eprint/3497/1/Modeling%20and%20performance%20enhancements%20of%20a%20gas%20turbine%20combined%20cycle%20power%20plant.pdf
_version_ 1783731899526545408