Noise eliminated ensemble empirical mode decomposition scalogram analysis for rotating machinery fault diagnosis
Rotating machinery is one type of major industrial component that suffers from various faults and damage due to the constant workload to which it is subjected. Therefore, a fast and reliable fault diagnosis method is essential for machine condition monitoring. Artificial intelligence can be applied...
محفوظ في:
المؤلف الرئيسي: | Atik, Faysal |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://umpir.ump.edu.my/id/eprint/35956/1/05.Noise%20eliminated%20ensemble%20empirical%20mode%20decomposition%20scalogram%20analysis.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Ensemble support vector machines and dempster-shafer evidence theory for machinery multi fault diagnosis
بواسطة: Hui, Kar Hoou
منشور في: (2019) -
Self-tuning linear adaptive genetic algorithm for feature selection in machinery fault diagnosis
بواسطة: Ooi, Ching Sheng
منشور في: (2021) -
Application of wavelet transform analysis for the diagnosis of blade faults in rotating machinery
بواسطة: Lim, Meng Hee
منشور في: (2010) -
Blade fault diagnosis using artificial intelligence technique
بواسطة: W. K., Ngui
منشور في: (2016) -
Quantifying depreciation in plant and machinery valuation
بواسطة: Sahray, Kholim
منشور في: (2009)