An application of predicting student performance using kernel k-means and smooth support vector machine
This thesis presents the model of predicting student academic performances inHigher Learning Institution (HLI).The prediction ofstudentssuccessfulis one of the most vital issues inHLI.In the previous work, thereare many methodsproposed topredictthe performanceof students such as Scholastic Aptitude...
محفوظ في:
المؤلف الرئيسي: | Sajadin, Sembiring |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2012
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://umpir.ump.edu.my/id/eprint/3672/1/An%20application%20of%20predicting%20student%20performance%20using%20kernel%20k-means%20and%20smooth%20support%20vector%20machine.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Incorporating optimized local protein structures and granular support vector machines for structural class prediction
بواسطة: Hassan, Rohayanti
منشور في: (2011) -
Combine holts winter and support vector machines in forecasting time series
بواسطة: Salisu, Alfa Mohammed
منشور في: (2013) -
Forecasting revenue passenger enplanements using wavelet-support vector machine
بواسطة: Zainuddin, Mohamad Aiman
منشور في: (2015) -
Malaysia household incomes classification prediction with k-means clustering and fuzzy inference system
بواسطة: Hamzah, Nur Atiqah
منشور في: (2018) -
Finding kernel function for stock market prediction with support vector regression
بواسطة: Chai, Chon Lung
منشور في: (2006)