Kesan ternakan sangkar ikan terapung terhadap ciri-ciri fizikal air, komuniti plankton dan taburan macrobenthos di Teluk Sepanggar, Sabah

Kajian kesan temakan ikan dalam sangkar terhadap ciri-ciri fizikal air, kelimpahan dan taburan komuniti plankton dan makrobentos di Teluk Sepanggar telah dijalankan. Sampel telah diambil di kawasan pinggir pantai di dalam sangkar dan kawasan luar pantai di Teluk Sepanggar pada monson Timur taut, mon...

Full description

Saved in:
Bibliographic Details
Main Author: Madihah Jaffar Sidik
Format: Thesis
Language:English
Published: 2007
Subjects:
Online Access:https://eprints.ums.edu.my/id/eprint/6285/1/mt0000000128.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-ums-ep.6285
record_format uketd_dc
institution Universiti Malaysia Sabah
collection UMS Institutional Repository
language English
topic SH Aquaculture
Fisheries
Angling
spellingShingle SH Aquaculture
Fisheries
Angling
Madihah Jaffar Sidik
Kesan ternakan sangkar ikan terapung terhadap ciri-ciri fizikal air, komuniti plankton dan taburan macrobenthos di Teluk Sepanggar, Sabah
description Kajian kesan temakan ikan dalam sangkar terhadap ciri-ciri fizikal air, kelimpahan dan taburan komuniti plankton dan makrobentos di Teluk Sepanggar telah dijalankan. Sampel telah diambil di kawasan pinggir pantai di dalam sangkar dan kawasan luar pantai di Teluk Sepanggar pada monson Timur taut, monson peralihan dan monson Barat daya. Suhu, salinio, pH dan kepekatan oksigen terlarut telah disukat secara in-situ menggunakan meter YSL Aquadop profiler digunakan untuk menyukat halaju arus manakala kejemihan pula diukur menggunakan cakera secchi. Pepejal terampai dalam sampel air dianalisis menggunakan kaedah pengeringan, pembakaran dan timbang di makmal. Sampel fitoplankton dan zooplankton diambil menggunakan jaring plankton bersaiz 20 pm. Grab sampler digunakan untuk mengambil sampel makrobentos. Keputusan julat halaju arus, pepejal terampai, suhu, salinity, pH, kejemihan dan kepekatan oksigen terlarut masing-masing 0.11 mls dan 0.50 mis, 0.05 giL dan 0.26 g/L, 29.11°C dan 30.77°C, 30.03 %0 dan 31.93 %0, 6.58 dan 8.10, 3.00 m dan 5.20 m, dan 65.21% dan 89.29 %. Terdapat 40 spesis fitoplankton telah dikenalpasti di mana Coscinodiseus spp (36%) adalah spesls yang tertinggi kelimpahannya. Purata kelimpahan fitoplankton berjulat di antara 2.20 x 106 sel/L dan 5 .59 x106 sel/L. Manakala, terdapat 65 spesis zooplankton di mana kelimpahan tertinggi adalah larval zooplankton (31%). Purata kelimpahan zooplankton berjulat di antara 1.19 x 1(j individulL dan 6.61 x 106 individu/L. Nassarius sp. merupakan kelimpahan tertinggi pada taburan makrobentos di mana 28 jenis spesis telah dicatatkan. Purata kelimpahan makrobentos berjulat di antara 6.97 x 104 individu/m3 dan 2.83 x 105 individu/m3 Variasi jangka masa adalah signifikan pada ciri-ciri fizikal air manakala perbezaan variasi ruang adalah tidak signifikan secara statistik. Walau bagaimanapun, pengukuran lapangan menunjukkan halaju arus yang rendah di da/am kawasan sangkar ikan disebabkan oleh struktur sangkar. Maka, pepejal terampai mencatatkan nilai yang tinggi di kawasan dalam sangkar berbanding kawasan dekat dengan daratan dan kawasan jauh dari daratan. Nombor, kelimpahan dan kepelbagaian spesis fitoplankton menunjukkan signifikan dalam variasi jangka masa (kecuali index Margalef Richness). Manakala, tiada perbezaan yang signifikan pada variasi ruang seeara statistik. Variasi jangka masa pada komuniti zooplankton adalah signifikan pada index Pielou Evenness dan Margalef Richness. Tiada perbezaan yang signifikan pada taburan ruang terhadap nombor, kelimpahan dan nilai kepelbagaian spesis zooplankton. Makrobenthos menunjukkan variasi yang signifikan pada kedua-dua taburan jangka masa dan ruang terhadap nombor, kelimpahan dan nilai kepelbagaian spesis makrobentos. Daripada kajian ini wujudnya perbezaan variasi jangka masa yang amat jelas pada ciri-ciri fizikal air, komuniti plankton dan taburan makrobentos di Teluk Sepanggar. Walau bagaimanapun, terdapat perbezaan yang kecil pada taburan ruang dalam parameterparameter yang dikaji di mana menunjukkan kesan yang kecil terhadap persekitaran sangkar dan kawasan kajian.
format Thesis
qualification_level Master's degree
author Madihah Jaffar Sidik
author_facet Madihah Jaffar Sidik
author_sort Madihah Jaffar Sidik
title Kesan ternakan sangkar ikan terapung terhadap ciri-ciri fizikal air, komuniti plankton dan taburan macrobenthos di Teluk Sepanggar, Sabah
title_short Kesan ternakan sangkar ikan terapung terhadap ciri-ciri fizikal air, komuniti plankton dan taburan macrobenthos di Teluk Sepanggar, Sabah
title_full Kesan ternakan sangkar ikan terapung terhadap ciri-ciri fizikal air, komuniti plankton dan taburan macrobenthos di Teluk Sepanggar, Sabah
title_fullStr Kesan ternakan sangkar ikan terapung terhadap ciri-ciri fizikal air, komuniti plankton dan taburan macrobenthos di Teluk Sepanggar, Sabah
title_full_unstemmed Kesan ternakan sangkar ikan terapung terhadap ciri-ciri fizikal air, komuniti plankton dan taburan macrobenthos di Teluk Sepanggar, Sabah
title_sort kesan ternakan sangkar ikan terapung terhadap ciri-ciri fizikal air, komuniti plankton dan taburan macrobenthos di teluk sepanggar, sabah
granting_institution Universiti Malaysia Sabah
granting_department Borneo Marine Research Institute
publishDate 2007
url https://eprints.ums.edu.my/id/eprint/6285/1/mt0000000128.pdf
_version_ 1747836324309630976
spelling my-ums-ep.62852017-10-06T08:51:45Z Kesan ternakan sangkar ikan terapung terhadap ciri-ciri fizikal air, komuniti plankton dan taburan macrobenthos di Teluk Sepanggar, Sabah 2007 Madihah Jaffar Sidik SH Aquaculture. Fisheries. Angling Kajian kesan temakan ikan dalam sangkar terhadap ciri-ciri fizikal air, kelimpahan dan taburan komuniti plankton dan makrobentos di Teluk Sepanggar telah dijalankan. Sampel telah diambil di kawasan pinggir pantai di dalam sangkar dan kawasan luar pantai di Teluk Sepanggar pada monson Timur taut, monson peralihan dan monson Barat daya. Suhu, salinio, pH dan kepekatan oksigen terlarut telah disukat secara in-situ menggunakan meter YSL Aquadop profiler digunakan untuk menyukat halaju arus manakala kejemihan pula diukur menggunakan cakera secchi. Pepejal terampai dalam sampel air dianalisis menggunakan kaedah pengeringan, pembakaran dan timbang di makmal. Sampel fitoplankton dan zooplankton diambil menggunakan jaring plankton bersaiz 20 pm. Grab sampler digunakan untuk mengambil sampel makrobentos. Keputusan julat halaju arus, pepejal terampai, suhu, salinity, pH, kejemihan dan kepekatan oksigen terlarut masing-masing 0.11 mls dan 0.50 mis, 0.05 giL dan 0.26 g/L, 29.11°C dan 30.77°C, 30.03 %0 dan 31.93 %0, 6.58 dan 8.10, 3.00 m dan 5.20 m, dan 65.21% dan 89.29 %. Terdapat 40 spesis fitoplankton telah dikenalpasti di mana Coscinodiseus spp (36%) adalah spesls yang tertinggi kelimpahannya. Purata kelimpahan fitoplankton berjulat di antara 2.20 x 106 sel/L dan 5 .59 x106 sel/L. Manakala, terdapat 65 spesis zooplankton di mana kelimpahan tertinggi adalah larval zooplankton (31%). Purata kelimpahan zooplankton berjulat di antara 1.19 x 1(j individulL dan 6.61 x 106 individu/L. Nassarius sp. merupakan kelimpahan tertinggi pada taburan makrobentos di mana 28 jenis spesis telah dicatatkan. Purata kelimpahan makrobentos berjulat di antara 6.97 x 104 individu/m3 dan 2.83 x 105 individu/m3 Variasi jangka masa adalah signifikan pada ciri-ciri fizikal air manakala perbezaan variasi ruang adalah tidak signifikan secara statistik. Walau bagaimanapun, pengukuran lapangan menunjukkan halaju arus yang rendah di da/am kawasan sangkar ikan disebabkan oleh struktur sangkar. Maka, pepejal terampai mencatatkan nilai yang tinggi di kawasan dalam sangkar berbanding kawasan dekat dengan daratan dan kawasan jauh dari daratan. Nombor, kelimpahan dan kepelbagaian spesis fitoplankton menunjukkan signifikan dalam variasi jangka masa (kecuali index Margalef Richness). Manakala, tiada perbezaan yang signifikan pada variasi ruang seeara statistik. Variasi jangka masa pada komuniti zooplankton adalah signifikan pada index Pielou Evenness dan Margalef Richness. Tiada perbezaan yang signifikan pada taburan ruang terhadap nombor, kelimpahan dan nilai kepelbagaian spesis zooplankton. Makrobenthos menunjukkan variasi yang signifikan pada kedua-dua taburan jangka masa dan ruang terhadap nombor, kelimpahan dan nilai kepelbagaian spesis makrobentos. Daripada kajian ini wujudnya perbezaan variasi jangka masa yang amat jelas pada ciri-ciri fizikal air, komuniti plankton dan taburan makrobentos di Teluk Sepanggar. Walau bagaimanapun, terdapat perbezaan yang kecil pada taburan ruang dalam parameterparameter yang dikaji di mana menunjukkan kesan yang kecil terhadap persekitaran sangkar dan kawasan kajian. 2007 Thesis https://eprints.ums.edu.my/id/eprint/6285/ https://eprints.ums.edu.my/id/eprint/6285/1/mt0000000128.pdf text en public masters Universiti Malaysia Sabah Borneo Marine Research Institute Alongi, D. M., Chong V. C., Dixon, P., Sasekumar, A. and lirendi, F. 2003. The influence of fish cage aquaculture on pelagic carbon flow and water chemistry in tidally dominated mangrove estuaries of peninsular Malaysia. Marine Environmental Research 55: 313-333. Ackefors, H. and Enell, M. 1994. The release of nutrient and organic matter from aquaculture systems in Nordic countries. Journal Apply Ichthyoll0: 225-241. Aktan, Y., Tufekci, V., Tufekci, H. and Aykulu, G. 2005. Distribution patterns, biomass estimates and diversity of phytoplankton in LImit bay (Turkey). Estuarine Coastal and Shelf Science 64: 372-384. Annual Fisheries Statistics. 1983. Fisheries Department, Ministry of Agriculture, Malaysia. Annual Fisheries Statistics. 1998. Fisheries Department, Ministry of Agriculture, Malaysia. Aure, J. and Stigebrandt, A. 1990. Quantitative estimates of the eutrophication effects of fish farming on fjords. Aquaculture 90: 135-156. Balloch, D., Davies, C. E. and Jones, F. H. 1976. Biological assessment of water quality in three British rivers: the North Esk (Scotland), the Ivel (England) and the Taf (Wales). Water Pollution ControI75:92. Baumgartner, S. 2002. Measuring the diversity of what? and for what purpose? a conceptual comparison of ecological and economic measures of biodiversity. Interdisciplinary Institute for Environmental Economics, University of Heidelberg, Germany and Energy and Resources Group, University of California, Berkeley, USA. Beveridge, M. C. M. 1996. Cage Aquaculture. Oxford: Blackwell Science. Brooks, K. M. and Mahnken, C. V. W. 2003. Interactions of Atlantic salmon in the pacific northeast environment: II. Organic Wastes Rsh Resources 62: 255-293. Brown, J. R., Gowen, R. J. and MciLusky, D. M. 1987. The effects of salmon farming on the benthos of Scottish sea loch. Journal of Experimental Marine Biology and Ecology 109: 39-51. CERC. 2003. Coastal Engineer Manual. Coastal Engineering Research Centre, Vicksburg: U.S. Corps of Engineer. Chareonpanich, c., Montani, S., Tsutsumi, H. and Nakamura, H. 1994. Estimation of oxygen consumption of a deposit-feeding polychaete, capItella sp. I. Rsheries Science 60: 249-251. Chong, V.c., Alongi, D. M., Natin, P., Ooi, A. L., Sasekumar, A. and Wong, S. C. 2004. Effects of fish cage aquaculture on water chemistry, plankton and macrobenthos abundance in Matang mangrove estuaries, Perak, Peninsular Malaysia. Marine Science into the New Millennium: New Perspectives and Challenges. Crawford, C. 2003. EnvironmentSal management of marine aquaculture in Tasmania, Australia. Aquaculture 226: 1-4. Crawford, C. M., Macleod, C. K. A. and Mitchell, I. M. 2003. Effects of shellfish farming on the benthic environment. Aquaculture 224: 117-140. De Jorge, V. N., Elliott, M., Orive, E. 2002. Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia 475-476. Department of Fisheries Malaysia. 1996. Annual Fisheries Statistics. Kuala Lumpur, Malaysia. Department of Fisheries Sabah, Malaysia. 2006. Http://WVMI.fishdept.sabah.gov.my/ aquaculture.asp. Malaysia aquafarm certification scheme; 1999-2006. Department of Fisheries Sabah, Malaysia. Edgar, G. J., Macleod, C. K., Mawbey, R. B. and Shields, D. 2005. Broad-scale effects of marine Salmonid aquaculture on macrobenthos and the sediment environment in southeastern Tasmania. Joumal of Experimental Marine Biology and Ecology 327: 70-90. FAa, 1987. Thematic evaluation of aquaculture. Rome: FAO. FAa. 1991. Reducing environmental impacts of coastal aquaCUlture. Italy: Food and Agriculture Organization of the United Nations, Fisheries Department. FAD. 1992. Guidelines for the promotion of environmental management of coastal aquaculture development. Italy: Food and Agriculture Organization of the United Nations, Fisheries Department. Fu, Y. Y., Yin, J. Q., Chen, Q. c., Huang, L. M. and Wong, C. K. 1995. Distribution and seasonality of marine zooplankton in the Pearl River estuary. In: environmental research in Pearl River and coastal areas. Guangzhou: Guangdong Higher Education Press. Gao, Q. F., Cheung, K. L., Cheung, S. G. and Shin, P. K. S. 2005. Effects of nutrient enrichment derived from fish farming activities on macroinvertebrate assemblages in a Subtropical Region of Hong Kong. Marine Pollution Bulletin 51: 994-1002. Gao, X.L. and Song, J. M. 2005. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. Marine Pollution Bulletin 50: 327-335. GESAMP, 1996. Monitoring the ecological effects of coastal aquaculture wastes. Rome: FAO Reports and studies 57. GESAMP. 1991. Joint group of experts on the scientific aspects of marine pollution 1991b. Global Strategies for Marine Environmental Protection. Rome: FAO Reports studies. GESAMP 45. Gimenez, F. A. and GarCia, B. G. 2004. Assessment of some chemical parameters in marine sediments exposed to offshore cage fish farming influence: A pilot study. Aquaculture 242: 283-295. Gonzalez, H. E. and Smatacek, V. 1994. The possible role of the cyclopoid cope pod oithona in retarding vertical flux of zooplankton faecal material. Marine Ecology Progress Series 113: 233-246. Gowen, R.J. and Bradbury, N. B. 1987. The ecological impact of salmonid farming in coastal waters: A review. Oceanography and Marine Biology Annual Review 25: 563-575. Gu, Xingen, Yuan, Qi, Yang, Jiaowen and Hua, Li. 1995. An ecological study on phytoplankton in frontal region of Changjiang estuarine area. Journal of Fishery Sciences of China 2(1): pp. 1-15. GUO, X. M., Ford, S. E. and Zhang, F. S. 1999. Molluscan aquaculture in China. Joumal of Shellfish Research 18: 19-31. Hall, P. O. J., Holby, 0., Kollberg, S. and Samuelsson, M. O. 1992. chemical fluxes and mass balances in a marine fish cage farm. iv. nitrogen. Marine Ecology Progress Series89: 81-91. ) Hansen, P., Ervik, K., Aure, A., Johannesen, J., Jahnsen, P., Stigebrandt, T. and 5chaanning, A. 2001. Regulating the local environmental impact of intenSive, marine fish farming: (Ii) the monitoring programme of the MOM system (modeling on growing fish farms monitoring). Aquaculture 194: 75-92. Harris, R. P., Wiebe, P. H., Lenz, J., Skjoldal, H. R. and Huntley, M. (ed.). 2005. Zooplankton Methodology Manual. London: Elsevier Acadamic Press. Harrison, P. J., Hu, M. H., Yang, Y. P. and Lu, X. 1990. Phosphate limitation in estuarine and coastal waters in China. Journal of Experimental Marine Biology and Ecology 140: 79-87. Hartstein N. D., Jakobsen, F. and Young, B. D. 2006. Hydrodynamic implications in and around a caged fin-fish farm and its implications on the dispersal of farm debris. In Press. Hartstein, N. D. and Rowden, A. A. 2004. Effect of biodeposits from mussel culture on macroinvertebrate assemblages at sites of different hydrodynamic regime. Marine Environmental Research 57: 339-357. Hendley, N. 1. 1977. The species diversity index of some in-shore diatoms communities and it's used in assessing the degree pollution insult on parts of the North Coast of Cornwall. In: Cramme, J. (ed.). Fourth Symposium on recent and fossil marine diatoms. Pp:355-378. Holby, O. and Hall, P. O. J. 1991. Chemical fluxes and mass balances in a marine fish cage farm. ii. Phosphorus. Marine Ecology Progress Series 70: 263-272. Holmer, M. 1991. Impacts of aquaculture on surrounding sediments: Generation of organic-rich sediments. Aquaculture and the Environment. Pauw, n. and Joyce, J (eds.). Aquaculture Society Special Publication 16: 155-175. Holmer, M. and Christensen, E. 1992. Impact of marine fish cage farming on metabolism and sulfate reduction of underlying sediments. Marine Ecological Progress Series 80: 191-201. Huang, L., Jian, W., Song, X., Huang, X., Liu, S., Qian, P., Yin, K. and Wu, M. 2004. Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Marine Pollution Bulletin 49: 588-596 Huguenin, J.E. and J. Colt, 1989. Design and operating guide for aquaculture seawater systems. Development Aquaculture fisheries Science 20:264. Hunt, B. P. V. and HOSie, G. W. 2006. The seasonal succession of zooplankton in the southern ocean south of Australia, part ii: the sub-antarctic to polar frontal zones. Deep-Sea Research 53(1): 1203-1223. Islam, M. S. 2005. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Marine Pollution Bulletin 50: 48-61. Iwama, G. 1991. Interactions between aquaculture and the environment. Critical Reviews in Environmental Control 21: 191-201. Jorgensen, S. E., Costanza, R., Xu, F. L. (ed.). 2005. Handbook of ecological indicators for assessment of ecosystem health. Florida: CRC Press. Karakassis, I., Tsapakis, M. and Hatziyanni, E. 1998. Seasonal variability in sediment profiles beneath fish farm cages in the Mediterranean. Marine Ecology Progress Series 162: 243-252. Karakassis, 1., Tsapakis, M., Hatziyanni, E., Papapoulou, K. N. and Plaiti, W. 2000. Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES Joumal of Marine Science 57: 1462-1471. Kang, Y., Kim, S. and Lee, W. 2006. Seasonal and spatial variations of zooplankton in the central and Southeastern Bearing Sea during the Mid-1990s. Deep-sea Research 53(1): 795-803. Krebs, C. J. 1998. Ecological Methodology. University of British Colombia: Addition Wesley Longman, Inc. Larkin, P.A., 1991. Mariculture and fisheries: future prospects and partnerships. in the ecology and management aspects of extensive mariculture. A symposium held 20-23 June 1989 in Nantes, France, edited by SJ. Lockwood. Copenhagen, International Council for the Exploration of the Sea. ICES Mar. Sci. Symp. 192: 6-14. Martens, C. S. and Val Klump, J. 1984. Biogeochemical cycling in an organic-rich coastal marine basin: 4, an organic carbon budget for sediments dominated by sulphate reduction and methanogenesis. Geochim Cosmochi. Acts 48: 1987-2004. Mazzola, A. S., Mirto, S., La Rosa, T., Fabiano, M. and Danovaro, R. 2000. Rsh-farming effects on benthic community structure in coastal sediments: Analysis of meiofaunal recovery. ICES Journal of Marine ScienceS7: 1454-1461. Mok, T.K. 1982. The environmental impact of cage culture operations. In: Guerrero, R. D. and Soesanto, V. (eds.) Report of the training course on small-scale pen and cage culture for finfish, Workshop proceedings report, UNDP/FAO South China Sea Fisheries Development and Coordinating Programme, SCS/GEN/82/34, Pp129-31. Mustafa, S. and Rahman, R. A. 2000. Sustainable marine aquaculture: recent developments with special references to Southeast Asia. Sabah: Universiti Malaysia Sabah. Naumenko, E. N. 1992. Long-term dynamics and modern state of zooplankton in the Vistula Lagoon. In Ecological Fisheries Studies in the Vistula Lagoon of the Baltic Sea. Kaliningrad: AtiantNIRO. (in Russian). Piehler, M. F., Twomey, L. J., Hall, N. S. and Pearl, H. W. 2004. Impacts of inorganic nutrient enrichment on phytoplankton community structure and function Pamlico Sound, NC, USA. Estuarine, Coastal and Shelf Science 61: 197-209. Robertson, A. 1. and Phillips, M. J. 1995. Mangroves as filters of shrimp pond effluents: Predictions and biogeochemical research needs. Hydrobiologia 295: 311-321. Rosenthal, H., Clement, S. L., Hostettler, N. and T. Mimmocchi, T. 1988. Report of the Ad Hoc study group on environmental impact of mariculture. Copenhagen, ICES Cooperation Resources Report 154: 83. Samuelsen, O. B., Ervik, A. and Solheim, E. 1988. A qualitative and quantitative analysis of the sediment gas and diethylether extract of the sediment from salmon farms. Aquaculture 74: 277-285. Saleh, E., Saad, S. and Hoque, M. A. 2005. Physical characteristics of marine water adjacent to UMS hatchery. Seminar on Research and Development in Fisheries and Marine Science. UMS-Kinki University Joint Seminar, UMS, Kota Kinabalu, Malaysia. Sarkar, R. R., Petrovskii, S. V., Biswas, M. and Chattopadhyay, J. 2006. An ecological study of a marine plankton community based on the field data collected from Bay of Bengal. Ecological Modeling 193: 589-601. Schaanning, M. T. 1994. Distribution of sediment properties in coastal areas adjacent to fish farms and evaluation of five locations surveyed in October 1993. Niva report No. 3012, Norwegian Institute of Water Research, Oslo, Norway. Schernewski, G. and Schiewer, U. 2002. Status, problems and integrated management of Baltic coastal ecosystem. Structure, Function and Coastal Zone Management. Berlin: Springer-Verlag. SChmidt, U.W., 1982. Selected socia-economic aspects of coastal aquaculture in tropical regions with respect to planning and implementation. CIFA Techology Paper. 9:129-41. Shin, P. K. S. and Lam, W. K. C. 2001. Development of a marine sediment pollution index. Environmental Pollution 113: 281-291. Shirota, A. 1966. The plankton of South Vietnam: fresh water and marine plankton. Nhatrang, Colombo plan expert on planktology, Faculty of Science, Saigon University and the Oceanographic Institute of Nhatrang, Vietnam and Overseas Technical Cooperation Agency, Japan. Simpson, E. H. 1949. Measurement of diversity. Nature, 163: 688-699. Smith, V. H., Tilman, G. D. and Nekola, J. C. 1999. Eutrophication: impacts of excess nutrient inputs of freshwater, marine and terrestrial ecosystems. Environmental Pollution 100: 179-196. Tan, Yeihui, Huang, L. M. and Chen, Q. C. In Press. Population dynamics and grazing of zooplankton in the Pearl River Estuary. Estuarine, Coastal and Shelf Science. 193: 589-601. Telesh, I. V. 2004. Plankton of the Baltic estuarine ecosystems with emphasis of Neva estuary: a review of present knowledge and research perspectives. Marine Pollution Bulletin 49: 206-240. Tinker, S. W. (ed.). 1966. Pacific Sea shells: A handbook of common marine mollusks of Hawaii and the South Seas. Tokyo: Charles E. Tuttle Company. Tomas, C. R. (ed.). 1997. Identifying Marine Plankton. Florida: Academic Press. Tropical Eco-Forest Consultant Scln. Bhd. Study on marine biological environment Tanjung Aru for Kota Kinabalu International Airport (Terminal-2) Redevelopment Project. Kota Kinabalu: Tropical Eco-Forest Consultant Sdn. Bhd. Wallin, M. and Hakanson, L. 1991. Nutrient loading models for estimating the environmental effects of marine fish farms. Marine Aquaculture and Environment. Copenhagen: Nordic Council of Ministers. Wang, W. X. and Dei, R. C. H. 2001. Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution 111 (2): 233-240. weston, D. P., 1990. Quantitative examination of macrobenthic community changes along an organiC enrichment gradient. Marine Ecology Progress Series 61: 233- 244. Wong, C. K., Chen, Q. C. and Huang, L. M., 1990. Fluorescence analysis of the gut contents of calanoid copepods in the Zhujiang River Estuary. Marine Science 2: 291-298. Wu, R.S.S., Lam, K.S., Mackay, D. W. Lau, T. C. and Yam, V. 1994. Impact of marine fish farming on water quality and bottom sediment: A case study in the subtropical environment. Marine Environmental Research 38: 115-145. Yin, K., Qian, P. Y., Wu, M. C. 5., Chen, J. c., Huang, L. M., Song, X. and Jian, W. J. 52001. Shift from P to N limitation of phytoplankton biomass across the Pearl River estuarine plume during summer. Marine Ecological Progress Series 221: 17-28.