Rekabentuk Sistem Diagnosis Pintar untuk penyakit Tuberkulosis berdasarkan imej kahak Ziehl-Neelsen

Tuberkulosis (TB) adalah salah satu penyakit yang boleh berjangkit dan penyakit ini di sebabkan oleh mikroorganisma yang dipanggil Mycobacterium Tuberkulosis. Mikroorganisma ini kebiasannya memasuki badan melalui pernafasan untuk memasuki paru-paru. Mikroorganisma ini berpecah daripada tempat asalan...

Full description

Saved in:
Bibliographic Details
Main Author: Aida Sharmila Wati, Wahab
Format: Thesis
Language:other
Subjects:
Online Access:http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/12855/1/p.1-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/12855/2/Full%20Text.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-unimap-12855
record_format uketd_dc
spelling my-unimap-128552011-06-28T14:24:00Z Rekabentuk Sistem Diagnosis Pintar untuk penyakit Tuberkulosis berdasarkan imej kahak Ziehl-Neelsen Aida Sharmila Wati, Wahab Tuberkulosis (TB) adalah salah satu penyakit yang boleh berjangkit dan penyakit ini di sebabkan oleh mikroorganisma yang dipanggil Mycobacterium Tuberkulosis. Mikroorganisma ini kebiasannya memasuki badan melalui pernafasan untuk memasuki paru-paru. Mikroorganisma ini berpecah daripada tempat asalan iaitu paru-paru ke bahagian-bahagian lain dalam badan melalui saluran darah. Apabila seseorang yang dijangkiti TB ini batuk, bersin, bercakap atau meludah, mereka telah melepaskan bakteria tuberkulosis di dalam titisan air ke udara. Seseorang hanya perlukan menyedut sedikit bakteria ini untuk dijangkiti TB. Tuberkulosis merupakan penyakit yang cepat merebak tetapi ia boleh dirawat, dan kaedah penting untuk mengawalnya adalah melalui pengesanan awal terhadap pesakit yang telah dijangkiti, melakukan rawatan dengan segera dan memantau pesakit dengan rawatan yang sepatutnya. Berdasarkan WHO 1998, mereka berpendapat untuk mengesan penyakit TB adalah dengan melihat dan melakukan saringan slaid kahak Ziehl-Neelsen (ZN) di bawah cahaya mikroskop. Tetapi kaedah ini mempunyai kelemahan dari segi masa saringan di mana 15 hingga 20 minit digunakan memproses satu slaid palitan kahak. Selain itu, terdapat kaedah konvensional untuk mengesan bakteria TB pada imej palitan kahak ZN iaitu dengan pengaplikasian empat teknik pemprosesan imej. Penggunaan empat teknik ini mampu memproses imej palitan kahak untuk mengesan basilus TB, tetapi dari segi masa pemprosesan, secara puratanya 20 minit juga digunakan untuk memproses satu slaid. Oleh itu, objektif kajian ini adalah untuk membangunkan satu Sistem Diagnosis Pintar untuk Penyakit Tuberkulosis. Sistem ini melibatkan penggunaan teknik rangkaian neural untuk mengurangkan lagi masa pemprosesan imej palitan kahak ZN berbanding mengunakan kaedah manual dan empat teknik pemprosesan imej. Teknik-teknik yang digunakan di dalam kajian ini untuk mengesan basilus TB adalah teknik pemetaan satu kepada satu piksel dan teknik pemetaan sembilan kepada satu piksel. Setiap teknik dibahagikan kepada empat kaedah rangkaian neural untuk mengesan basilus TB. Setiap teknik dan kaedah telah diuji dengan menggunakan 40 imej palitan kahak ZN. Di samping itu juga, sistem ini telah dibangunkan dengan sistem pengiraan basilus TB secara automatik. Sistem diagnosis TB ini akan menentukan bilangan basilus TB yang terdapat pada setiap imej kahak ZN. Sistem pengiraan basilus TB automatik ini bertujuan untuk membantu doktor-doktor atau pakar mikrobiologi untuk menentukan bilangan basilus TB pada setiap imej kahak ZN dan mengurangkan penggunaan masa. Dari segi ketepatan pengiraan basilus TB, sistem ini mampu memberi bilangan yang hampir sama dengan kaedah manual yang dijalankan oleh pakar mikrobiologi. Sistem yang dibangunkan ini dapat mencapai keputusan pengesanan yang baik di mana nilai peratusan ketepatan diagnosis, kesensitifan dan kespesifisikan adalah masing-masing 100%. Masa pemprosesan bagi satu imej dapat dikurangkan sehingga 62.5% berbanding menggunakan kaedah manual dan penggunaan teknik pemprosesan imej. Sistem pengiraan automatik ini juga dapat mengurangkan tekanan pada mata doktor atau pakar mikrobiologi semasa melakukan proses saringan slaid kahak ZN di bawah cahaya mikroskop. Universiti Malaysia Perlis 2010 Thesis other http://dspace.unimap.edu.my/123456789/12855 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/12855/1/p.1-24.pdf 73edf06d827dfc0afb2725be896a7347 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/12855/2/Full%20Text.pdf 93deb5492656075b21dc3b289e85f9c2 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/12855/3/license.txt 63786ac24af593fad2dee2a0f7e36788 Tuberkulosis (TB) Kesihatan Mycobacterium Tuberkulosis Kahak Ziehl-Neelsen (ZN) Sistem Diagnosis Pintar School of Computer & Communication Engineering
institution Universiti Malaysia Perlis
collection UniMAP Institutional Repository
language other
topic Tuberkulosis (TB)
Kesihatan
Mycobacterium Tuberkulosis
Kahak Ziehl-Neelsen (ZN)
Sistem Diagnosis Pintar
spellingShingle Tuberkulosis (TB)
Kesihatan
Mycobacterium Tuberkulosis
Kahak Ziehl-Neelsen (ZN)
Sistem Diagnosis Pintar
Aida Sharmila Wati, Wahab
Rekabentuk Sistem Diagnosis Pintar untuk penyakit Tuberkulosis berdasarkan imej kahak Ziehl-Neelsen
description Tuberkulosis (TB) adalah salah satu penyakit yang boleh berjangkit dan penyakit ini di sebabkan oleh mikroorganisma yang dipanggil Mycobacterium Tuberkulosis. Mikroorganisma ini kebiasannya memasuki badan melalui pernafasan untuk memasuki paru-paru. Mikroorganisma ini berpecah daripada tempat asalan iaitu paru-paru ke bahagian-bahagian lain dalam badan melalui saluran darah. Apabila seseorang yang dijangkiti TB ini batuk, bersin, bercakap atau meludah, mereka telah melepaskan bakteria tuberkulosis di dalam titisan air ke udara. Seseorang hanya perlukan menyedut sedikit bakteria ini untuk dijangkiti TB. Tuberkulosis merupakan penyakit yang cepat merebak tetapi ia boleh dirawat, dan kaedah penting untuk mengawalnya adalah melalui pengesanan awal terhadap pesakit yang telah dijangkiti, melakukan rawatan dengan segera dan memantau pesakit dengan rawatan yang sepatutnya. Berdasarkan WHO 1998, mereka berpendapat untuk mengesan penyakit TB adalah dengan melihat dan melakukan saringan slaid kahak Ziehl-Neelsen (ZN) di bawah cahaya mikroskop. Tetapi kaedah ini mempunyai kelemahan dari segi masa saringan di mana 15 hingga 20 minit digunakan memproses satu slaid palitan kahak. Selain itu, terdapat kaedah konvensional untuk mengesan bakteria TB pada imej palitan kahak ZN iaitu dengan pengaplikasian empat teknik pemprosesan imej. Penggunaan empat teknik ini mampu memproses imej palitan kahak untuk mengesan basilus TB, tetapi dari segi masa pemprosesan, secara puratanya 20 minit juga digunakan untuk memproses satu slaid. Oleh itu, objektif kajian ini adalah untuk membangunkan satu Sistem Diagnosis Pintar untuk Penyakit Tuberkulosis. Sistem ini melibatkan penggunaan teknik rangkaian neural untuk mengurangkan lagi masa pemprosesan imej palitan kahak ZN berbanding mengunakan kaedah manual dan empat teknik pemprosesan imej. Teknik-teknik yang digunakan di dalam kajian ini untuk mengesan basilus TB adalah teknik pemetaan satu kepada satu piksel dan teknik pemetaan sembilan kepada satu piksel. Setiap teknik dibahagikan kepada empat kaedah rangkaian neural untuk mengesan basilus TB. Setiap teknik dan kaedah telah diuji dengan menggunakan 40 imej palitan kahak ZN. Di samping itu juga, sistem ini telah dibangunkan dengan sistem pengiraan basilus TB secara automatik. Sistem diagnosis TB ini akan menentukan bilangan basilus TB yang terdapat pada setiap imej kahak ZN. Sistem pengiraan basilus TB automatik ini bertujuan untuk membantu doktor-doktor atau pakar mikrobiologi untuk menentukan bilangan basilus TB pada setiap imej kahak ZN dan mengurangkan penggunaan masa. Dari segi ketepatan pengiraan basilus TB, sistem ini mampu memberi bilangan yang hampir sama dengan kaedah manual yang dijalankan oleh pakar mikrobiologi. Sistem yang dibangunkan ini dapat mencapai keputusan pengesanan yang baik di mana nilai peratusan ketepatan diagnosis, kesensitifan dan kespesifisikan adalah masing-masing 100%. Masa pemprosesan bagi satu imej dapat dikurangkan sehingga 62.5% berbanding menggunakan kaedah manual dan penggunaan teknik pemprosesan imej. Sistem pengiraan automatik ini juga dapat mengurangkan tekanan pada mata doktor atau pakar mikrobiologi semasa melakukan proses saringan slaid kahak ZN di bawah cahaya mikroskop.
format Thesis
author Aida Sharmila Wati, Wahab
author_facet Aida Sharmila Wati, Wahab
author_sort Aida Sharmila Wati, Wahab
title Rekabentuk Sistem Diagnosis Pintar untuk penyakit Tuberkulosis berdasarkan imej kahak Ziehl-Neelsen
title_short Rekabentuk Sistem Diagnosis Pintar untuk penyakit Tuberkulosis berdasarkan imej kahak Ziehl-Neelsen
title_full Rekabentuk Sistem Diagnosis Pintar untuk penyakit Tuberkulosis berdasarkan imej kahak Ziehl-Neelsen
title_fullStr Rekabentuk Sistem Diagnosis Pintar untuk penyakit Tuberkulosis berdasarkan imej kahak Ziehl-Neelsen
title_full_unstemmed Rekabentuk Sistem Diagnosis Pintar untuk penyakit Tuberkulosis berdasarkan imej kahak Ziehl-Neelsen
title_sort rekabentuk sistem diagnosis pintar untuk penyakit tuberkulosis berdasarkan imej kahak ziehl-neelsen
granting_institution Universiti Malaysia Perlis
granting_department School of Computer & Communication Engineering
url http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/12855/1/p.1-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/12855/2/Full%20Text.pdf
_version_ 1747836763668217856