Synthesis, characterization and performance study of Calcium Oxide catalyst from waste eggshell for Pyrolysis of empty fruit bunch
Catalytic pyrolysis of empty fruit bunch with eggshell waste catalyst were conducted in this studied to synthesized calcium oxide catalyst from waste eggshell, to investigate the physical and chemical properties of calcium oxide catalyst, and to characterize and evaluate the performance of bio-oi...
Saved in:
Format: | Thesis |
---|---|
Language: | English |
Subjects: | |
Online Access: | http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72325/1/Page%201-24.pdf http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72325/2/Full%20text.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-unimap-72325 |
---|---|
record_format |
uketd_dc |
spelling |
my-unimap-723252021-10-08T00:56:22Z Synthesis, characterization and performance study of Calcium Oxide catalyst from waste eggshell for Pyrolysis of empty fruit bunch Razi, Ahmad Catalytic pyrolysis of empty fruit bunch with eggshell waste catalyst were conducted in this studied to synthesized calcium oxide catalyst from waste eggshell, to investigate the physical and chemical properties of calcium oxide catalyst, and to characterize and evaluate the performance of bio-oil from catalytic pyrolysis. Calcination process was conducted in tube furnace at temperature of 900 °C for 1 hour for converting the calcium carbonate to CaO in the eggshell. Elemental composition, crystallite structures, and morphological structures were performed for characterization of eggshell while ultimate and proximate analysis, heating value, and thermogravimetric analysis was performed for characterization of biomass. Catalytic pyrolysis was conducted by different parameters such as temperature, heating rate, holding time and catalyst loading to study the effect of pyrolysis parameters on oil yield. Optimization was performed by Design Expert 7.1 Software. Oil yield were analyzed in order to determine the quality of oil. High oil yield were obtained at temperature of 400 °C, heating rate of 80 °C/min, holding time at 4 min and 10% of catalyst loading. For temperature parameter, oil yield was increased by 14%, while gas yield reduced by 13.7% and char yield reduced by 0.3%. For heating rate, oil and char yield was increased by 15.4% and 3.9%, respectively, while gas yield decreased by 19.3%. Meanwhile, for holding time parameter, the oil and gas yield was increased by 10.4% and 13.1%, respectively while char yield decreased by 23.5%. The oil and char yield increased by 14.7% and 9.6%, respectively after the addition of eggshell catalyst. However, gas yield reduced by 24.3%. Meanwhile, from optimization studied, high oil yield were obtained at temperature of 434.63 °C, heating rate of 76.03 °C/min, holding time at 2.55 min, and 8.02% of catalyst loading, with predicted bio-oil yield was 31.81%. Confirmation runs were performed by using the same conditions and gave an average of 31.41%. Analysis from FTIR and GCMS showed that most of oxygenated and nitrogen compound were reduced after the addition of catalyst such as carboxylic acids, amide, amines and ketones compound while hydrocarbon and phenols were increased. Universiti Malaysia Perlis (UniMAP) Thesis en http://dspace.unimap.edu.my:80/xmlui/handle/123456789/72325 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72325/3/license.txt 8a4605be74aa9ea9d79846c1fba20a33 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72325/1/Page%201-24.pdf d82a3e4c2dc07db47009836d8b38e68c http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72325/2/Full%20text.pdf 31166ba9d9b8dc4a7db432a674475c30 Universiti Malaysia Perlis (UniMAP) Renewable energy sources Catalysts Biomass Pyrolysis Waste eggshell Catalytic pyrolysis School of Environmental Engineering |
institution |
Universiti Malaysia Perlis |
collection |
UniMAP Institutional Repository |
language |
English |
advisor |
Razi, Ahmad |
topic |
Renewable energy sources Catalysts Biomass Pyrolysis Waste eggshell Catalytic pyrolysis |
spellingShingle |
Renewable energy sources Catalysts Biomass Pyrolysis Waste eggshell Catalytic pyrolysis Synthesis, characterization and performance study of Calcium Oxide catalyst from waste eggshell for Pyrolysis of empty fruit bunch |
description |
Catalytic pyrolysis of empty fruit bunch with eggshell waste catalyst were conducted in
this studied to synthesized calcium oxide catalyst from waste eggshell, to investigate the
physical and chemical properties of calcium oxide catalyst, and to characterize and
evaluate the performance of bio-oil from catalytic pyrolysis. Calcination process was
conducted in tube furnace at temperature of 900 °C for 1 hour for converting the calcium
carbonate to CaO in the eggshell. Elemental composition, crystallite structures, and
morphological structures were performed for characterization of eggshell while ultimate
and proximate analysis, heating value, and thermogravimetric analysis was performed
for characterization of biomass. Catalytic pyrolysis was conducted by different
parameters such as temperature, heating rate, holding time and catalyst loading to study
the effect of pyrolysis parameters on oil yield. Optimization was performed by Design
Expert 7.1 Software. Oil yield were analyzed in order to determine the quality of oil.
High oil yield were obtained at temperature of 400 °C, heating rate of 80 °C/min, holding
time at 4 min and 10% of catalyst loading. For temperature parameter, oil yield was
increased by 14%, while gas yield reduced by 13.7% and char yield reduced by 0.3%.
For heating rate, oil and char yield was increased by 15.4% and 3.9%, respectively,
while gas yield decreased by 19.3%. Meanwhile, for holding time parameter, the oil and
gas yield was increased by 10.4% and 13.1%, respectively while char yield decreased
by 23.5%. The oil and char yield increased by 14.7% and 9.6%, respectively after the
addition of eggshell catalyst. However, gas yield reduced by 24.3%. Meanwhile, from
optimization studied, high oil yield were obtained at temperature of 434.63 °C, heating
rate of 76.03 °C/min, holding time at 2.55 min, and 8.02% of catalyst loading, with
predicted bio-oil yield was 31.81%. Confirmation runs were performed by using the
same conditions and gave an average of 31.41%. Analysis from FTIR and GCMS
showed that most of oxygenated and nitrogen compound were reduced after the addition
of catalyst such as carboxylic acids, amide, amines and ketones compound while
hydrocarbon and phenols were increased. |
format |
Thesis |
title |
Synthesis, characterization and performance study of Calcium Oxide catalyst from waste eggshell for Pyrolysis of empty fruit bunch |
title_short |
Synthesis, characterization and performance study of Calcium Oxide catalyst from waste eggshell for Pyrolysis of empty fruit bunch |
title_full |
Synthesis, characterization and performance study of Calcium Oxide catalyst from waste eggshell for Pyrolysis of empty fruit bunch |
title_fullStr |
Synthesis, characterization and performance study of Calcium Oxide catalyst from waste eggshell for Pyrolysis of empty fruit bunch |
title_full_unstemmed |
Synthesis, characterization and performance study of Calcium Oxide catalyst from waste eggshell for Pyrolysis of empty fruit bunch |
title_sort |
synthesis, characterization and performance study of calcium oxide catalyst from waste eggshell for pyrolysis of empty fruit bunch |
granting_institution |
Universiti Malaysia Perlis (UniMAP) |
granting_department |
School of Environmental Engineering |
url |
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72325/1/Page%201-24.pdf http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72325/2/Full%20text.pdf |
_version_ |
1747836864633503744 |