An investigation on the effects of AI2 O3 nanolubrication system with surfactant on tool wear and surface roughness in turning process

Application of nanolubricants can improve machining performance since the rolling action of billions of nanoparticles at the tool-chip interface leads to less friction; which can produce superior surface quality and longer tool life. The combination of nanolubricants with minimum quantity lubrica...

Full description

Saved in:
Bibliographic Details
Format: Thesis
Language:English
Subjects:
Online Access:http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72338/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72338/2/Full%20text.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Application of nanolubricants can improve machining performance since the rolling action of billions of nanoparticles at the tool-chip interface leads to less friction; which can produce superior surface quality and longer tool life. The combination of nanolubricants with minimum quantity lubricant (MQL) systems in machining, minimize the consumption of lubrication oil; consequently, less pollution will be caused. Nanolubricants is a lubrication alternative to improve machining output, a cost saving and less harmful cutting lubricant to human and nature. However, the superiority of nanolubricants is limited, due to the agglomeration of nanoparticles, which leads to sedimentation of nanoparticles after a period of time. The addition of a surfactant can lower the agglomeration of nanoparticles and stabilize the nanolubricants for a longer period. But, lack of study on the performance of nanolubricants with surfactant restricted the fundamental understanding on their effect on mechanics of machining process. Hence, to investigate the effectiveness of aluminum oxide (Al2O3) nanolubricants with Sodium Dodecylbenzene Sulfonate (SDBS) surfactant, experimental investigations have been attempted in this study while machining titanium alloy, Ti-6AL-4V. For a better penetration of nanoparticles into cutting region, nanolubricants was supplied with MQL system