An investigation on the effects of AI2 O3 nanolubrication system with surfactant on tool wear and surface roughness in turning process

Application of nanolubricants can improve machining performance since the rolling action of billions of nanoparticles at the tool-chip interface leads to less friction; which can produce superior surface quality and longer tool life. The combination of nanolubricants with minimum quantity lubrica...

全面介绍

Saved in:
书目详细资料
格式: Thesis
语言:English
主题:
在线阅读:http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72338/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72338/2/Full%20text.pdf
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:Application of nanolubricants can improve machining performance since the rolling action of billions of nanoparticles at the tool-chip interface leads to less friction; which can produce superior surface quality and longer tool life. The combination of nanolubricants with minimum quantity lubricant (MQL) systems in machining, minimize the consumption of lubrication oil; consequently, less pollution will be caused. Nanolubricants is a lubrication alternative to improve machining output, a cost saving and less harmful cutting lubricant to human and nature. However, the superiority of nanolubricants is limited, due to the agglomeration of nanoparticles, which leads to sedimentation of nanoparticles after a period of time. The addition of a surfactant can lower the agglomeration of nanoparticles and stabilize the nanolubricants for a longer period. But, lack of study on the performance of nanolubricants with surfactant restricted the fundamental understanding on their effect on mechanics of machining process. Hence, to investigate the effectiveness of aluminum oxide (Al2O3) nanolubricants with Sodium Dodecylbenzene Sulfonate (SDBS) surfactant, experimental investigations have been attempted in this study while machining titanium alloy, Ti-6AL-4V. For a better penetration of nanoparticles into cutting region, nanolubricants was supplied with MQL system