Synthesis of precipitated calcium carbonate (PCC) nano-particles using turbo-mixing reactive precipitation

Calcium carbonate (CaCO3) is a crystalline compound appear abundantly in nature substance mostly in sedimentary rocks which comprise more than 4% of the earth’s crust throughout the world. Calcium carbonate is one of the most extensively studied inorganic compounds because of its importance in th...

Full description

Saved in:
Bibliographic Details
Format: Thesis
Language:English
Subjects:
Online Access:http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72437/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72437/2/Full%20text.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-unimap-72437
record_format uketd_dc
spelling my-unimap-724372021-10-14T01:25:19Z Synthesis of precipitated calcium carbonate (PCC) nano-particles using turbo-mixing reactive precipitation Aimi Noorliyana, Hashim Calcium carbonate (CaCO3) is a crystalline compound appear abundantly in nature substance mostly in sedimentary rocks which comprise more than 4% of the earth’s crust throughout the world. Calcium carbonate is one of the most extensively studied inorganic compounds because of its importance in the various fields and industrial processes due to its large range of applications. In recent decades, conventional productions of the precipitated calcium carbonate (PCC) only manage to produce particle size not less than 200 nm. In this thesis, an innovative and novel technology method of processing called Turbo-Mixing Reactive Precipitation (TMRP) design proposed as an alternative to this current processing or conventional productions of fine precipitated calcium carbonate (nano-PCC) in turbo-mixing conditions. In the TMRP process, nano-PCC is fabricated using gas-liquid-solid systems (precipitation) of the calcium hydroxide slurry (Ca(OH)2) or better known as “milk of lime” in a stirred tank batch reactor system. Carbon dioxide and nitrogen gas is introduced into the tank through bubbled into the “milk of lime” in the reactor tank. The key research of this study explored new methodologies and optimization the influence parameters in the production of nano-PCC using TMRP technique. The experimental result indicated that the most reactive of quicklime can be obtained by calcined at 1100 °C with 60 minutes of soaking time for sample sized range between -30+20 mm. An average particle size approximately 26.79 nm of CaCO3 nanoparticles was successfully produced by the 15 ℓ/min flowing rate of CO2 gas and O2-free N2 gas, 0.60 M concentrations of Ca(OH)2 slurry and 900 rpm stirring rotation speed at low precipitation temperature (10 ±5 ºC). Thesis en http://dspace.unimap.edu.my:80/xmlui/handle/123456789/72437 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72437/3/license.txt 8a4605be74aa9ea9d79846c1fba20a33 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72437/1/Page%201-24.pdf c83ae5704c1ae8e63dafa54ecffad544 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72437/2/Full%20text.pdf 07bee825adc56f77e3078b7779617cd0 Universiti Malaysia Perlis (UniMAP) Calcium carbonate Crystallography Precipitation (Chemistry) Precipitated Calcium Carbonate (PCC) School of Materials Engineering
institution Universiti Malaysia Perlis
collection UniMAP Institutional Repository
language English
advisor Aimi Noorliyana, Hashim
topic Calcium carbonate
Crystallography
Precipitation (Chemistry)
Precipitated Calcium Carbonate (PCC)
spellingShingle Calcium carbonate
Crystallography
Precipitation (Chemistry)
Precipitated Calcium Carbonate (PCC)
Synthesis of precipitated calcium carbonate (PCC) nano-particles using turbo-mixing reactive precipitation
description Calcium carbonate (CaCO3) is a crystalline compound appear abundantly in nature substance mostly in sedimentary rocks which comprise more than 4% of the earth’s crust throughout the world. Calcium carbonate is one of the most extensively studied inorganic compounds because of its importance in the various fields and industrial processes due to its large range of applications. In recent decades, conventional productions of the precipitated calcium carbonate (PCC) only manage to produce particle size not less than 200 nm. In this thesis, an innovative and novel technology method of processing called Turbo-Mixing Reactive Precipitation (TMRP) design proposed as an alternative to this current processing or conventional productions of fine precipitated calcium carbonate (nano-PCC) in turbo-mixing conditions. In the TMRP process, nano-PCC is fabricated using gas-liquid-solid systems (precipitation) of the calcium hydroxide slurry (Ca(OH)2) or better known as “milk of lime” in a stirred tank batch reactor system. Carbon dioxide and nitrogen gas is introduced into the tank through bubbled into the “milk of lime” in the reactor tank. The key research of this study explored new methodologies and optimization the influence parameters in the production of nano-PCC using TMRP technique. The experimental result indicated that the most reactive of quicklime can be obtained by calcined at 1100 °C with 60 minutes of soaking time for sample sized range between -30+20 mm. An average particle size approximately 26.79 nm of CaCO3 nanoparticles was successfully produced by the 15 ℓ/min flowing rate of CO2 gas and O2-free N2 gas, 0.60 M concentrations of Ca(OH)2 slurry and 900 rpm stirring rotation speed at low precipitation temperature (10 ±5 ºC).
format Thesis
title Synthesis of precipitated calcium carbonate (PCC) nano-particles using turbo-mixing reactive precipitation
title_short Synthesis of precipitated calcium carbonate (PCC) nano-particles using turbo-mixing reactive precipitation
title_full Synthesis of precipitated calcium carbonate (PCC) nano-particles using turbo-mixing reactive precipitation
title_fullStr Synthesis of precipitated calcium carbonate (PCC) nano-particles using turbo-mixing reactive precipitation
title_full_unstemmed Synthesis of precipitated calcium carbonate (PCC) nano-particles using turbo-mixing reactive precipitation
title_sort synthesis of precipitated calcium carbonate (pcc) nano-particles using turbo-mixing reactive precipitation
granting_department School of Materials Engineering
url http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72437/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/72437/2/Full%20text.pdf
_version_ 1747836866847047680