Fabrication and properties of magnesium-calcium alloy via powder metallurgy technique

Composition of Mg-Ca alloys were prepared by powder metallurgy (PM) method with addition of different calcium content and sintering temperature. This is to evaluate the effect caused by the amount of calcium content and the influence of sintering temperature in the metal matrix alloy. Calcium act as...

Full description

Saved in:
Bibliographic Details
Format: Thesis
Language:English
Subjects:
Online Access:http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77174/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77174/2/Full%20text.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77174/4/Syaza%20Nabilla.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-unimap-77174
record_format uketd_dc
spelling my-unimap-771742022-11-24T07:36:17Z Fabrication and properties of magnesium-calcium alloy via powder metallurgy technique Zuraidawani, Che Daud, Dr. Composition of Mg-Ca alloys were prepared by powder metallurgy (PM) method with addition of different calcium content and sintering temperature. This is to evaluate the effect caused by the amount of calcium content and the influence of sintering temperature in the metal matrix alloy. Calcium act as the alloying element in Mg-Ca is added in by 0.5, 1, 1.5 and 2 weight percentage (wt.%) and sintered at 500, 550 and 600 °C (T1, T2 and T3 respectively) in argon atmosphere. The effect of sintering is also investigated by focusing on the microstructure and properties of sintered sample. XRD analysis shows that the addition of calcium leads to the formation of intermetallic Mg2Ca phase at the border of α-Mg grain boundaries. Particularly, causing an increment in hardness values of the samples. More calcium content leads to smaller grain structure and increase stress between particles. Hence causes embrittlement in the sample alloy. The density of each sample alloy increased from 1.78 g/cm3 to 1.83 g/cm3 while porosity profiles show inverse characteristics upon addition of calcium. Morphological analysis carried out by optical microscope shows increase pores refinement with the increase of sintering temperature together with calcium content in Mg-Ca alloys. Due to the formation of Mg2Ca in the alloy, the trend of corrosion rates show increase profile as calcium content increased. The samples also show an increment as sintering temperature increased. Tafel extrapolation graph shows that the corrosion rate of Mg-Ca alloy increases as calcium content increases. However, there is an only small increment rate difference that is 8.52x10-1 mpy value of most rapid corrosion on Mg-2Ca sintered at 600 °C sample and the slowest rate is 1.59x10-4 mpy on pure Mg sample sintered at 500 °C. Universiti Malaysia Perlis (UniMAP) Thesis en http://dspace.unimap.edu.my:80/xmlui/handle/123456789/77174 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77174/3/license.txt 8a4605be74aa9ea9d79846c1fba20a33 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77174/1/Page%201-24.pdf a519046219ede942415b99aa3f3a158f http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77174/2/Full%20text.pdf 8bb72a5dbf3d79a07e826e601ac7d272 http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77174/4/Syaza%20Nabilla.pdf cee16e735dadb8a0983b653d4ee73d93 Universiti Malaysia Perlis (UniMAP) Magnesium alloys Powder Metallurgy School of Materials Engineering
institution Universiti Malaysia Perlis
collection UniMAP Institutional Repository
language English
advisor Zuraidawani, Che Daud, Dr.
topic Magnesium alloys
Powder Metallurgy
spellingShingle Magnesium alloys
Powder Metallurgy
Fabrication and properties of magnesium-calcium alloy via powder metallurgy technique
description Composition of Mg-Ca alloys were prepared by powder metallurgy (PM) method with addition of different calcium content and sintering temperature. This is to evaluate the effect caused by the amount of calcium content and the influence of sintering temperature in the metal matrix alloy. Calcium act as the alloying element in Mg-Ca is added in by 0.5, 1, 1.5 and 2 weight percentage (wt.%) and sintered at 500, 550 and 600 °C (T1, T2 and T3 respectively) in argon atmosphere. The effect of sintering is also investigated by focusing on the microstructure and properties of sintered sample. XRD analysis shows that the addition of calcium leads to the formation of intermetallic Mg2Ca phase at the border of α-Mg grain boundaries. Particularly, causing an increment in hardness values of the samples. More calcium content leads to smaller grain structure and increase stress between particles. Hence causes embrittlement in the sample alloy. The density of each sample alloy increased from 1.78 g/cm3 to 1.83 g/cm3 while porosity profiles show inverse characteristics upon addition of calcium. Morphological analysis carried out by optical microscope shows increase pores refinement with the increase of sintering temperature together with calcium content in Mg-Ca alloys. Due to the formation of Mg2Ca in the alloy, the trend of corrosion rates show increase profile as calcium content increased. The samples also show an increment as sintering temperature increased. Tafel extrapolation graph shows that the corrosion rate of Mg-Ca alloy increases as calcium content increases. However, there is an only small increment rate difference that is 8.52x10-1 mpy value of most rapid corrosion on Mg-2Ca sintered at 600 °C sample and the slowest rate is 1.59x10-4 mpy on pure Mg sample sintered at 500 °C.
format Thesis
title Fabrication and properties of magnesium-calcium alloy via powder metallurgy technique
title_short Fabrication and properties of magnesium-calcium alloy via powder metallurgy technique
title_full Fabrication and properties of magnesium-calcium alloy via powder metallurgy technique
title_fullStr Fabrication and properties of magnesium-calcium alloy via powder metallurgy technique
title_full_unstemmed Fabrication and properties of magnesium-calcium alloy via powder metallurgy technique
title_sort fabrication and properties of magnesium-calcium alloy via powder metallurgy technique
granting_institution Universiti Malaysia Perlis (UniMAP)
granting_department School of Materials Engineering
url http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77174/1/Page%201-24.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77174/2/Full%20text.pdf
http://dspace.unimap.edu.my:80/xmlui/bitstream/123456789/77174/4/Syaza%20Nabilla.pdf
_version_ 1776104245210120192