Water quality modeling of oil palm plantation predominated area - a case study

Water quality modeling has always been regarded as a useful t"o ol in water quality management. In this study, Biochemical Oxygen Demand, Dissolved Oxygen, Total Suspended Solids and Total Coliform Counts are simulated along Sg. Telong. The Steady-State condition is considered and First-Orde...

Full description

Saved in:
Bibliographic Details
Main Author: Tang, Jock Kie
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://ir.unimas.my/id/eprint/10147/3/Water%20Quality%20Modeling%20of%20Oil%20Palm%20Plantation%20Predominated%20Area%20%E2%80%93%20A%20Case%20Study%20%28fulltext%29.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-unimas-ir.10147
record_format uketd_dc
spelling my-unimas-ir.101472023-05-02T08:43:50Z Water quality modeling of oil palm plantation predominated area - a case study 2013 Tang, Jock Kie GE Environmental Sciences S Agriculture (General) Water quality modeling has always been regarded as a useful t"o ol in water quality management. In this study, Biochemical Oxygen Demand, Dissolved Oxygen, Total Suspended Solids and Total Coliform Counts are simulated along Sg. Telong. The Steady-State condition is considered and First-Order Kinetic Process is assumed for the fate of the above water qualities along Sg. Telong. In this study, Streeter-Phelp Model was used to predict downstream Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), Total Suspended Solids (TSS) and Total Coliform Counts (TCC) of Sg. Telong. It was found that the BOD, TSS and TCC levels would drop while DO levels would increase until it reaches DO saturation point downstream from a discharge point upstream. Discharge from other plantations such as Arah Bersama OPP would affect the deoxygenation rate, Kd and the reoxygenation rate, Ka. Therefore, the actual DO levels may deviate from the simulated results as the river flows pass Arah Bersama OPP. This study also looks into the Deoxygenation Rate, Kd, Reaeration Rate, Ka and Settling Coefficient, Ks. With the measured Deoxygenation rate, Kd, Rearation rate, Ka and Settling Coefficient, Ks to simulate the fate of BOD, DO, TSS and TCC at 100m, 200m, 600m, 1km, 2km, 3km, 3.2km, 4km, 5km, 6km, 7km, 8km, 9km, and 9.9km downstream of discharge point. The Deoxygenation rate, " Kd, and Reaeration rate, Ka at 27.3°C were fo~nd to be 0.717 s-', and 0.894 s-', respectively. The observed initial Oxygen deficit was 5.27 mglL at O-km. The measured Oxygen deficit was 5.27 mglL at O-km and decreased to 0.00 mg/L at 9.7 km downstream of discharge point. The TSS levels were simulated in four different ranges for particles with aerodynamic diameters of 50 - 75 11m, 76 - 100 11m, 101 125 11m and 126 - 15Q 11m with Settling Coefficients, Ks at 0.003 s-', 0.005 s-', 0.009 , ii S-I and 0.013 S-I at 27.3°C, respectively. A comparison of the mathematical model simulated and measured water qualities at 3.2 km downstream of discharge point, the simulated results are in good agreement with measured values. To achi~ve effective pollution control, water resource management and sustainable development, quantitative contributions and environmental impacts should be identified and assessed. Universiti Malaysia Sarawak, (UNIMAS) 2013 Thesis http://ir.unimas.my/id/eprint/10147/ http://ir.unimas.my/id/eprint/10147/3/Water%20Quality%20Modeling%20of%20Oil%20Palm%20Plantation%20Predominated%20Area%20%E2%80%93%20A%20Case%20Study%20%28fulltext%29.pdf text en validuser masters Universiti Malaysia Sarawak, UNIMAS Faculty of Resource Science and Technology.
institution Universiti Malaysia Sarawak
collection UNIMAS Institutional Repository
language English
topic GE Environmental Sciences
S Agriculture (General)
spellingShingle GE Environmental Sciences
S Agriculture (General)
Tang, Jock Kie
Water quality modeling of oil palm plantation predominated area - a case study
description Water quality modeling has always been regarded as a useful t"o ol in water quality management. In this study, Biochemical Oxygen Demand, Dissolved Oxygen, Total Suspended Solids and Total Coliform Counts are simulated along Sg. Telong. The Steady-State condition is considered and First-Order Kinetic Process is assumed for the fate of the above water qualities along Sg. Telong. In this study, Streeter-Phelp Model was used to predict downstream Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), Total Suspended Solids (TSS) and Total Coliform Counts (TCC) of Sg. Telong. It was found that the BOD, TSS and TCC levels would drop while DO levels would increase until it reaches DO saturation point downstream from a discharge point upstream. Discharge from other plantations such as Arah Bersama OPP would affect the deoxygenation rate, Kd and the reoxygenation rate, Ka. Therefore, the actual DO levels may deviate from the simulated results as the river flows pass Arah Bersama OPP. This study also looks into the Deoxygenation Rate, Kd, Reaeration Rate, Ka and Settling Coefficient, Ks. With the measured Deoxygenation rate, Kd, Rearation rate, Ka and Settling Coefficient, Ks to simulate the fate of BOD, DO, TSS and TCC at 100m, 200m, 600m, 1km, 2km, 3km, 3.2km, 4km, 5km, 6km, 7km, 8km, 9km, and 9.9km downstream of discharge point. The Deoxygenation rate, " Kd, and Reaeration rate, Ka at 27.3°C were fo~nd to be 0.717 s-', and 0.894 s-', respectively. The observed initial Oxygen deficit was 5.27 mglL at O-km. The measured Oxygen deficit was 5.27 mglL at O-km and decreased to 0.00 mg/L at 9.7 km downstream of discharge point. The TSS levels were simulated in four different ranges for particles with aerodynamic diameters of 50 - 75 11m, 76 - 100 11m, 101 125 11m and 126 - 15Q 11m with Settling Coefficients, Ks at 0.003 s-', 0.005 s-', 0.009 , ii S-I and 0.013 S-I at 27.3°C, respectively. A comparison of the mathematical model simulated and measured water qualities at 3.2 km downstream of discharge point, the simulated results are in good agreement with measured values. To achi~ve effective pollution control, water resource management and sustainable development, quantitative contributions and environmental impacts should be identified and assessed.
format Thesis
qualification_level Master's degree
author Tang, Jock Kie
author_facet Tang, Jock Kie
author_sort Tang, Jock Kie
title Water quality modeling of oil palm plantation predominated area - a case study
title_short Water quality modeling of oil palm plantation predominated area - a case study
title_full Water quality modeling of oil palm plantation predominated area - a case study
title_fullStr Water quality modeling of oil palm plantation predominated area - a case study
title_full_unstemmed Water quality modeling of oil palm plantation predominated area - a case study
title_sort water quality modeling of oil palm plantation predominated area - a case study
granting_institution Universiti Malaysia Sarawak, UNIMAS
granting_department Faculty of Resource Science and Technology.
publishDate 2013
url http://ir.unimas.my/id/eprint/10147/3/Water%20Quality%20Modeling%20of%20Oil%20Palm%20Plantation%20Predominated%20Area%20%E2%80%93%20A%20Case%20Study%20%28fulltext%29.pdf
_version_ 1783728015560146944