Isolation of Endophytic Fungi from Torch Ginger, Etlingera elatior (Jack) R.M. Smith, and Identification of Potential Antagonists against Selected Plant Pathogenic Fungi

The screening of antagonistic activity of endophytic fungi isolated from a medicinal plant, Etlingera elatior was carried out against three common plant pathogens which are Colletotrichum gloeosporioides, Fusarium decemcellulare and Ceratocystis paradoxa. Initially, a total of 138 endophytic fungi w...

Full description

Saved in:
Bibliographic Details
Main Author: Pandi, Sulastri Fitri
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://ir.unimas.my/id/eprint/27688/1/Sulastri%20Fitri%20ft.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-unimas-ir.27688
record_format uketd_dc
institution Universiti Malaysia Sarawak
collection UNIMAS Institutional Repository
language English
topic Q Science (General)
QR Microbiology
spellingShingle Q Science (General)
QR Microbiology
Pandi, Sulastri Fitri
Isolation of Endophytic Fungi from Torch Ginger, Etlingera elatior (Jack) R.M. Smith, and Identification of Potential Antagonists against Selected Plant Pathogenic Fungi
description The screening of antagonistic activity of endophytic fungi isolated from a medicinal plant, Etlingera elatior was carried out against three common plant pathogens which are Colletotrichum gloeosporioides, Fusarium decemcellulare and Ceratocystis paradoxa. Initially, a total of 138 endophytic fungi were isolated from E. elatior samples from four different locations, however, after further subculturing and screening for identical colonies, only 38 endophytic fungi were preceded for the Dual Culture Assay screenings. The antagonisms were found to differ among the isolated endophytic fungi however Neurospora crassa, Aspergillus niger, Penicillium citrinum, Trichoderma harzianum, and Cunninghamella elegans has shown significantly high level of antagonism against C. gloeosporioides. As for F. decemcellulare and C. paradoxa, N. crassa and T. harzianum had exhibited positive antagonism against the two pathogens. Then, the volatile organic compounds (VOCs) produced by the fungi were identified by the Gas Chromatography Mass-Spectrometry (GC-MS) to detect the most abundant compound from each sample. The GC-MS analysis revealed that all of the antagonists possessed a high level of either ester, alcohol and toluene content which were some of the widely known VOCs from various studies. In conclusion, N. crassa showed the highest inhibition on all three pathogens, making it the strongest antagonist when screened through a series of antagonistic tests, compared to the other four fungi. The antagonistic ability of N. crassa was first discovered in this study despite the fact that it has not been previously recognized as one of the well known biological control agents (BCAs). Keywords: Endophytic fungi, E. elatior, antagonistic activity, Dual Culture Assay, secondary metabolites
format Thesis
qualification_level Master's degree
author Pandi, Sulastri Fitri
author_facet Pandi, Sulastri Fitri
author_sort Pandi, Sulastri Fitri
title Isolation of Endophytic Fungi from Torch Ginger, Etlingera elatior (Jack) R.M. Smith, and Identification of Potential Antagonists against Selected Plant Pathogenic Fungi
title_short Isolation of Endophytic Fungi from Torch Ginger, Etlingera elatior (Jack) R.M. Smith, and Identification of Potential Antagonists against Selected Plant Pathogenic Fungi
title_full Isolation of Endophytic Fungi from Torch Ginger, Etlingera elatior (Jack) R.M. Smith, and Identification of Potential Antagonists against Selected Plant Pathogenic Fungi
title_fullStr Isolation of Endophytic Fungi from Torch Ginger, Etlingera elatior (Jack) R.M. Smith, and Identification of Potential Antagonists against Selected Plant Pathogenic Fungi
title_full_unstemmed Isolation of Endophytic Fungi from Torch Ginger, Etlingera elatior (Jack) R.M. Smith, and Identification of Potential Antagonists against Selected Plant Pathogenic Fungi
title_sort isolation of endophytic fungi from torch ginger, etlingera elatior (jack) r.m. smith, and identification of potential antagonists against selected plant pathogenic fungi
granting_institution Universiti Malaysia Sarawak
granting_department Department of Plant Science and Environmental Ecology
publishDate 2019
url http://ir.unimas.my/id/eprint/27688/1/Sulastri%20Fitri%20ft.pdf
_version_ 1783728350779408384
spelling my-unimas-ir.276882023-06-21T09:16:05Z Isolation of Endophytic Fungi from Torch Ginger, Etlingera elatior (Jack) R.M. Smith, and Identification of Potential Antagonists against Selected Plant Pathogenic Fungi 2019-10-14 Pandi, Sulastri Fitri Q Science (General) QR Microbiology The screening of antagonistic activity of endophytic fungi isolated from a medicinal plant, Etlingera elatior was carried out against three common plant pathogens which are Colletotrichum gloeosporioides, Fusarium decemcellulare and Ceratocystis paradoxa. Initially, a total of 138 endophytic fungi were isolated from E. elatior samples from four different locations, however, after further subculturing and screening for identical colonies, only 38 endophytic fungi were preceded for the Dual Culture Assay screenings. The antagonisms were found to differ among the isolated endophytic fungi however Neurospora crassa, Aspergillus niger, Penicillium citrinum, Trichoderma harzianum, and Cunninghamella elegans has shown significantly high level of antagonism against C. gloeosporioides. As for F. decemcellulare and C. paradoxa, N. crassa and T. harzianum had exhibited positive antagonism against the two pathogens. Then, the volatile organic compounds (VOCs) produced by the fungi were identified by the Gas Chromatography Mass-Spectrometry (GC-MS) to detect the most abundant compound from each sample. The GC-MS analysis revealed that all of the antagonists possessed a high level of either ester, alcohol and toluene content which were some of the widely known VOCs from various studies. In conclusion, N. crassa showed the highest inhibition on all three pathogens, making it the strongest antagonist when screened through a series of antagonistic tests, compared to the other four fungi. The antagonistic ability of N. crassa was first discovered in this study despite the fact that it has not been previously recognized as one of the well known biological control agents (BCAs). Keywords: Endophytic fungi, E. elatior, antagonistic activity, Dual Culture Assay, secondary metabolites Universiti Malaysia Sarawak (UNIMAS) 2019-10 Thesis http://ir.unimas.my/id/eprint/27688/ http://ir.unimas.my/id/eprint/27688/1/Sulastri%20Fitri%20ft.pdf text en validuser masters Universiti Malaysia Sarawak Department of Plant Science and Environmental Ecology Aamir, S. (2018). A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathology & Quarantine, 5(2), 74–81. http://doi.org/10.5943/ppq/5/2/6 Adebola Azeez, L., Muid, S., & Hasnul, B. M. (2016). Identification of Volatile Secondary Metabolites From An Endophytic Microfungus. Malaysian Journal of Analytical Sciences, 20(4), 751–759. http://doi.org/10.17576/mjas-2016-2004-07 Alexopoulos, C. J., Bold, H. C., & Delevoryas, T. (1980). Morphology of plants and fungi. Harper & Row. Alsarhan, A., Sultana, N., Al-Khatib, A., & Kadir, M. R. A. (2014). Review on some Malaysian traditional medicinal plants with therapeutic properties. Journal of Basic and Applied Sciences, 10, 149-159. Alsohaili, S. A., & Bani-Hasan, B. M. (2018). Morphological and Molecular Identification of Fungi Isolated from Different Environmental Sources in the Northern Eastern Desert of Jordan. Jordan Journal of Biological Sciences, 11(3), 82-97. Al-Hatmi, A. M., Meis, J. F., & de Hoog, G. S. (2016). Fusarium: molecular diversity and intrinsic drug resistance. PLoS Pathogens, 12(4), e1005464. Amatuzzi, R. F., Cardoso, N., Poltronieri, A. S., Poitevin, C. G., Dalzoto, P., Zawadeneak, M. A., & Pimentel, I. C. (2018). Potential of endophytic fungi as biocontrol agents of Duponchelia fovealis (Zeller) (Lepidoptera: Crambidae). Brazilian Journal of Biology, 78(3), 429-435. Anderson, I.C., & Parkin, P.I. (2007). Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules. Journal of Microbiology Methods, 68(1), 248–253. Aneja, M., Gianfagna, T. J., & Hebbar, P. K. (2005). Trichoderma harzianum produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Physiological and Molecular Plant Pathology, 67(6), 304-307.98 Ariffin, S. A., Davis, P., & Ramasamy, K. (2011). Cytotoxic and antimicrobial activities of Malaysian marine endophytic fungi. Botanica Marina, 54(1), 95-100. Bakar, A., Izzany, F., Bakar, A., Fadzelly, M., Abdullah, N., Endrini, S., & Rahmat, A. (2018). A Review of Malaysian Medicinal Plants with Potential Anti-Inflammatory Activity. Advances in Pharmacological Sciences, 2018. Http://doi.org/10.1155/2018/8603602 Baker, C. J., Harrington, T. C., Krauss, U., & Alfenas, A. C. (2003). Genetic variability and host specialization in the Latin American clade of Ceratocystis fimbriata. Phytopathology, 93(10), 1274-1284. http://doi.org/10.1094/phyto.2003.93.10.1274 Ballabio, A., Gibbs, R., & Caskey, C. T. (1990). PCR test for cystic fibrosis deletion. Nature, 343(6255), 220. Bastakoti, S., Belbase, S., Manandhar, S., & Arjyal, C. (2017). Trichoderma species as Biocontrol Agent against Soil Borne Fungal Pathogens. Nepal Journal of Biotechnology, 5(1), 39-45. Begum, M. M., Sariah, M., Abidin, Z. M. A., Puteh, A. B., & Rahman, M. A. (2008). Antagonistic potential of selected fungal and bacterial biocontrol agents against Colletotrichum truncatum of soybean seeds. Pertanica Journal of Tropical Agricultural Science, 31, 45-53. Bezerra, J. D., Nascimento, C. C., Barbosa, R. D. N., da Silva, D. C., Svedese, V. M., Silva-Nogueira, E. B., & Souza-Motta, C. M. (2015). Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential. Brazilian Journal of Microbiology, 46(1), 49-57. http://doi.org/10.1590/S1517-838246120130657 Bhardwaj, N. R., & Kumar, J. (2017). Characterization of volatile secondary metabolites from Trichoderma asperellum. Journal of Applied and Natural Science, 9(2), 954-959. Brawner, J., Japarudin, Y., Lapammu, M., Rauf, R., Boden, D., & Wingfield, M. J. (2015). Evaluating the inheritance of Ceratocystis acaciivora symptom expression in a diverse Acacia mangium breeding population. Southern Forests: A Journal of Forest Science, 77(1), 83-90. http://10.2989/20702620.2015.1007412 Bronicka, M., Raman, A., Hodgkins, D., & Nicol, H. (2007). Abundance and diversity of fungi in a saline soil in central-west New South Wales, Australia. Sydowia-Horn, 59(1), 7-24.99 Cabrera, L., Rojas, P., Rojas, S., Pardo‐De la Hoz, C. J., Mideros, M. F., Danies, G. & Restrepo, S. (2018). Most Colletotrichum species associated with tree tomato (Solanum betaceum) and mango (Mangifera indica) crops are not host‐specific. Plant pathology, 67(5), 1022-1030. Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum–current status and future directions. Studies in Mycology, 73, 181-213. Cano, J., Guarro, J., & Gené, J. (2004). Molecular and Morphological Identification of Colletotrichum Species of Clinical Interest. Journal of Clinical Microbiology Jun 2004, 42 (6) 2450-2454. http://doi: 10.1128/JCM.42.6.2450-2454.2004 Chan, E. W., Lim, Y. Y., & Wong, S. K. (2013). Botany, uses, phytochemistry and pharmacology of selected Etlingera gingers: A review. Pharmacognosy Communications, 3(4), 3-12. http://doi.org/10.5530/pc.2013.4.2 Contreras-Cornejo, H. A., Macías-Rodríguez, L., Herrera-Estrella, A., & López-Bucio, J. (2014). The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant and Soil, 379(1-2), 261-274. Damm, U., Cannon, P. F., Woudenberg, J. H. C., & Crous, P. W. (2012). The Colletotrichum acutatum species complex. Studies in Mycology, 73, 37-113. http://doi.org/10.3114/sim0010. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. http://doi.org/10.1111/J.1364-3703.2011.00783.X Den Hond, F., Groenewegen, P., & Van Straalen, N. (Eds.). (2008). Pesticides: problems, improvements, alternatives. John Wiley & Sons. Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57(1), 41- 54.100 Dos Santos, P. J. C., Savi, D. C., Gomes, R. R., Goulin, E. H., Senkiv, C. D. C., Tanaka, F. A. O., & Glienke, C. (2016). Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiological Research, 186, 153-160. Douanla-Meli, C., Langer, E., & Mouafo, F. T. (2013). Fungal endophyte diversity and community patterns in healthy and yellowing leaves of Citrus limon. Fungal Ecology, 6(3), 212-222. Ellis, M. B. (1971). Dematiaceous hyphomycetes. Commonwealth Mycological Institure Kew, 608(1), 1-25. Fesel, P. H., & Zuccaro, A. (2016). Dissecting endophytic lifestyle along the parasitism/mutualism continuum in Arabidopsis. Current Opinion in Microbiology, 32, 103-112. Gaddeyya, G., Niharika, P. S., Bharathi, P., & Kumar, P. R. (2012). Isolation and identification of soil mycoflora in different crop fields at Salur Mandal. Advances in Applied Science Research, 3(4), 2020-2026. Ganley, R. J., Sniezko, R. A., & Newcombe, G. (2008). Endophyte-mediated resistance against white pine blister rust in Pinus monticola. Forest Ecology and Management, 255(7), 2751-2760. González-Teuber, M. (2016). The defensive role of foliar endophytic fungi for a South American tree. AoB Plants, 8. Gouda, S., Das, G., Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiology 7, 1538. http://doi.org/10.3389/fmicb.2016.01538 Greenfield, M., Pareja, R., Ortiz, V., Gómez-Jiménez, M. I., Vega, F. E., & Parsa, S. (2015). A novel method to scale up fungal endophyte isolations. Biocontrol Science and Technology, 25(10), 1208-1212. http://doi: 10.1080/09583157.2015.1033382 Guarro, J. (2013). Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. European Journal of Clinical Microbiology & Infectious Diseases, 32(12), 1491-1500.101 Hamdi, N.B., Salem, I. B., & M’Hamdi, M. (2018). Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egyptian Journal of Biological Pest Control, 28(1), 25. http://doi.org/10.1186/s41938-017-0010-3 Hamzah, T. N. T., Lee, S. Y., Hidayat, A., Terhem, R., Faridah-Hanum, I., & Mohamed, R. (2018). Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata and identification of potential antagonists against the soilborne fungus, Fusarium solani. Frontiers in Microbiology, 9(6), 1-17. http://doi.org/10.3389/fmicb.2018.01707 Hardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Doring, M., & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews., 79(3), 293-320. http://doi.org/10.1128/mmbr.00050-14 Hazalin, N. A., Ramasamy, K., Lim, S. S. M., Wahab, I. A., Cole, A. L., & Majeed, A. B. A. (2009). Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the National Park, Pahang, Malaysia. BMC Complementary and Alternative Medicine, 9(1), 46. Https://doi.org/10.1186/1472-6882-9-46 Heath, R. N. (2009). Ceratocystis species in southern and eastern Africa with particular reference to Ceratocystis albifundus (Doctoral dissertation, University of Pretoria). Hibbett, D. S., & Taylor, J. W. (2013). Fungal systematics: is a new age of enlightenment at hand. Nature Reviews Microbiology, 11(2), 129. Hidayat, A., Turjaman, M., Faulina, S. A., Ridwan, F., Irawadi, T. T., & Iswanto, A. H. (2019). Antioxidant and Antifungal Activity of Endophytic Fungi Associated with Agarwood Trees. Journal of the Korean Wood Science and Technology, 47(4), 459-471. Hilber-Bodmer, M., Schmid, M., Ahrens, C. H., & Freimoser, F. M. (2017). Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi. BMC Microbiology, 17(1), 4.102 Holland, L. A., Lawrence, D. P., Nouri, M. T., Travadon, R., Harrington, T. C., & Trouillas, F. P. (2019). Taxonomic revision and multi-locus phylogeny of the North American clade of Ceratocystis. Fungal Systematics and Evolution, 3(1), 319-340. Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J. (Eds.). (1990). Optimization of PCRs. PCR protocols: a guide to methods and applications. Academic Press, 3-12. Jia, M., Chen, L., Xin, H. L., Zheng, C. J., Rahman, K., Han, T., & Qin, L. P. (2016). A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Frontiers in Microbiology, 7(6), 906. http://doi.org/10.3389/fmicb.2016.00906 Juwita, T., Puspitasari, I. M., & Levita, J. (2018). Torch Ginger (Etlingera elatior): A Review on its Botanical Aspects, Phytoconstituents and Pharmacological Activities. Pakistan Journal of Biological Sciences, 21(4), 151-165. http://doi.org/10.3923/pjbs.2018.151.165 Kameshwari, S., Mohana, B., & Thara Saraswathi, K. J. (2015). Isolation and identification of endophytic fungi from Urginea indica, a medicinal plant from diverse regions of south India. International Journal of Latest Research in Science and Technology, 4(1), 75-80. Katoch, M., & Pull, S. (2017). Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential. Pharmaceutical Biology, 55(1), 1528-1535. http://doi.org/10.1080/13880209.2017.1309054 Khan, R., Shahzad, S., Choudhary, M. I., Khan, S. A., & Ahmad, A. (2010). Communities of endophytic fungi in medicinal plant Withania somnifera. Pakistan Journal of Botany, 42(2), 1281-1287. Khan, S. I., Shah, Z. I. H. U., & Hussain, S. (2017). In Vitro Antagonistic Activity for Selected Fungal Species Against Wilt Causing Phytopathogens. Sarhad Journal of Agriculture, 33(1), 144-150. http://doi.org/10.17582/journal.sja/2017.33.1.144.150 Krnjaja, V., Stanković, S., Obradović, A., Petrović, T., Mandić, V., Bijelić, Z., & Božić, M. (2018). Trichothecene genotypes of Fusarium graminearum populations isolated from winter wheat crops in Serbia. Toxins, 10(11), 460. http://doi.org/10.3390/toxins10110460103 Kumar, D. S. S., & Hyde, K. D. (2004). Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Diversity, 17(1), 9-69. Kumar, S., & Kaushik, N. (2013). Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PloS One, 8(2), e56202. http://doi.org/10.1371/journal.pone.0056202 Lahlali, R., & Hijri, M. (2010). Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiology Letters, 311(2), 152-159. http://doi.org/10.1111/j.1574-6968.2010.02084.x Landum, M. C., do Rosário Félix, R., Cabrita, M. J., Rei, F., & Varanda, C. M. (2016). Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microbiological Research, 183, 100-108. http://doi.org/10.1016/j.micres.2015.12.001 Lee, P. Y., Costumbrado, J., Hsu, C. Y., & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments, 62, 1–5. http://doi.org/10.3791/3923 Leelavathi, M. S., Vani, L., & Reena, P. (2014). Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. International Journal of Current Microbiology and Applied Science, 3, 96-103. Li, J. L., Sun, X., Chen, L., & Guo, L. D. (2016). Community structure of endophytic fungi of four mangrove species in Southern China. Mycology, 7(4), 180-190. http://doi.org/10.1080/21501203.2016.1258439 Lutzoni, F., Kauff, F., Cox, C.J., Mc Laughlin, D., Celio, G. (2004). Assembling the fungal tree of life: progress, classification and evolution of the subcellular traits. American Journal of Botany, 91(1), 1446−1480. Maharachchikumbura, S. S., Hyde, K. D., Jones, E. G., McKenzie, E. H. C., Bhat, J. D., Dayarathne, M. C., & Shang, Q. J. (2016). Families of Sordariomycetes. Fungal Diversity, 79(1), 1-317. Http://doi.org/10.1007/s13225-016-0369-6104 Maid, M., & Ratnam, W. (2014, September). Incidences and severity of vascular wilt in Acacia mangium plantations in Sabah, Malaysia. In AIP Conference Proceedings, 1614(1), 784–789. Http://doi.org/10.1063/1.4895302 Mbenoun, M., De Beer, Z. W., Wingfield, M. J., Wingfield, B. D., & Roux, J. (2014). Reconsidering species boundaries in the Ceratocystis paradoxa complex, including a new species from oil palm and cacao in Cameroon. Mycologia, 106(4), 757-784. http://doi.org/10.3852/13-298. Meena, M., Swapnil, P., Zehra, A., Dubey, M. K., & Upadhyay, R. S. (2017). Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Archives of Phytopathology and Plant Protection, 50(13-14), 629- 648. http://doi: 10.1080/03235408.2017.1357360. Mejdoub-Trabelsi. B., Rania Aydi Ben A, Nawaim A, Mejda Daami R (2017) Antifungal Potential of Extracellular Metabolites from Penicillium spp. and Aspergillus spp. Naturally Associated to Potato against Fusarium species. Causing Tuber Dry Rot. Journal of Microbial and Biochemical Technology 9(4), 181-190. http://doi: 10.4172/1948-5948.1000364 Mendoza, J. L. H., Pérez, M. I. S., Prieto, J. M. G., Velásquez, J. D. Q., Olivares, J. G. G., & Langarica, H. R. G. (2015). Antibiosis of Trichoderma spp. strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina. Brazilian Journal of Microbiology, 46(4), 1093-1101. Mishra, V. K., Passari, A. K., Chandra, P., Leo, V. V., Kumar, B., Uthandi, S., & Singh, B. P. (2017). Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PloS One, 12(10), 1–24. http://doi.org/10.1371/journal.pone.0186234. Mongkolporn, O., & Taylor, P. W. J. (2018). Chili anthracnose: Colletotrichum taxonomy and pathogenicity. Plant Pathology, 67(6), 1255-1263. Morath, S. U., Hung, R., & Bennett, J. W. (2012). Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26(2-3), 73-83. http://doi.org/10.1016/j.fbr.2012.07.001105 Nagamani, P., Bhagat, S., Biswas, M. K., & Viswanath, K. (2017). Effect of Volatile and Non Volatile Compounds of Trichoderma spp. against soil borne diseases of chickpea. International Journal of Current Microbiology and Applied Science, 6(7), 1486-1491. Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148. http://doi.org/10.3389/fpubh.2016.00148 Pazouki, M., & Panda, T. (2000). Understanding the morphology of fungi. Bioprocess Engineering, 22(2), 127-143. Ploetz, R. C. (2015). Fusarium wilt of banana. Phytopathology, 105(12), 1512-1521. Radu, S., & Kqueen, C. Y. (2002). Preliminary screening of endophytic fungi from medicinal plants in Malaysia for antimicrobial and antitumor activity. The Malaysian Journal of Medical Sciences, 9(2), 23. Rahman, M. A., Begum, M. F., & Alam, M. F. (2009). Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology, 37(4), 277-285. http://doi.org/10.4489/MYCO.2009.37.4.277 Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: a primer for the natural products research community. Journal of Natural Products, 80(3), 756-770. http://doi.org/10.1021/acs.jnatprod.6b01085 Rajesh, R. W., Rahul, M. S., & Ambalal, N. S. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952–1965. http://doi.org/10.5897/AJAR2015.10584 Ramasamy, K., Lim, S. M., Bakar, H. A., Ismail, N., Ismail, M. S., Ali, M. F., & Cole, A. L. (2010). Antimicrobial and cytotoxic activities of Malaysian endophytes. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 24(5), 640-643. http://doi:10.1002/ptr.2891106 Raut, I., Doni, M. B., Calin, M., & Oancea, F. (2014). Effect of volatile and non-volatile metabolites from Trichoderma spp. against important phytopathogens. Revista de Chimie, 65, 1285-1288. Reddy, B. N., Saritha, K. V., & Hindumathi, A. (2014). In vitro screening for antagonistic potential of seven species of Trichoderma againts different plant pathogenic fungi. Journal of Biology,2, 29-36. Refaei, J., Jones, E. B. G., Sakayaroj, J., & Santhanam, J. (2011). Endophytic fungi from Rafflesia cantleyi: species diversity and antimicrobial activity. Mycosphere, 2(4), 429-447. http://doi.org/10.1002/eat.20710 Ridzuan, R., Rafii, M., Ismail, S., Mohammad Yusoff, M., Miah, G., & Usman, M. (2018). Breeding for Anthracnose Disease Resistance in Chili: Progress and Prospects. International Journal of Molecular Sciences, 19(10), 3122. http://doi.org/10.3390/ijms19103122 Rusli, M. H., Seman, I. A., & Yusof, Z. N. B. (2013). Fusarium Vascular Infection of Oil Palm: Epidemiology, Molecular Diagnostic Tools and the Potential of Fusarium Suppressive Soil in Malaysia. Journal of Environmental Science and Engineering, 2(10), 578–585. Rohilla, S. K., & Salar, R. K. (2012). Isolation and characterization of various fungal strains from agricultural soil contaminated with pesticides. Research Journal of Recent Sciences,1, 297–303. Schmidt, R., de Jager, V., Zühlke, D., Wolff, C., Bernhardt, J., Cankar, K., Jules, B., Ijcken, W.V., Sleutels, F., Boer, W. D., Garbeva, P., & Riedel, K. (2017). Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Scientific Reports, 7(1), 862. http://doi.org/10.1038/s41598-017-00893-3 Schulz, B., Römmert, A. K., Dammann, U., Aust, H. J., & Strack, D. (1999). The endophyte-host interaction: a balanced antagonism?. Mycological Research, 103(10), 1275-1283. Seepe, H. A., Amoo, S. O., & Nxumalo, W. (2018). Potential application of medicinal plant extracts against pathogenic Fusarium species. South African Journal of Botany, 115, 308-309. Sepiah, M. & Ploetz, R. C. (2003). Diseases of Carambola. Diseases of Tropical Fruit Crops, 1, 145 -161107 Sharma, M., & Kulshrestha, S. (2015). Colletotrichum gloeosporioides: an anthracnose causing pathogen of fruits and vegetables. Biosciences Biotechnology Research Asia, 12(2), 1233- 1246. Shittu, H. O., Castroverde, D. C., Nazar, R. N., & Robb, J. (2009). Plant-endophyte interplay protects tomato against a virulent Verticillium. Planta, 229(2), 415-426. Siddiquee, S., Al Azad, S., Bakar, F. A., Naher, L., & Kumar, S. V. (2015). Separation and identification of hydrocarbons and other volatile compounds from cultures of Aspergillus niger by GC–MS using two different capillary columns and solvents. Journal of Saudi Chemical Society, 19(3), 243-256. http://doi.org/10.1016/j.jscs.2012.02.007 Strobel, G., Singh, S. K., Riyaz-Ul-Hassan, S., Mitchell, A. M., Geary, B., & Sears, J. (2011). An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiology Letters, 320(2), 87-94. Summerell, B. A. (2019). Resolving Fusarium: Current Status of the Genus. Annual Review of Phytopathology, 57, 323-339. Suresh, N., & Nelson, R. (2016). Isolation of antagonistic fungi and evaluation of antifungal activity of the separated metabolite against the red rot of sugarcane pathogen. European Journal of Experimental Biology, 6, 15-21. Suryanto, D., Yeldi, N., & Munir, E. (2016). Antifungal activity of endophyte bacterial isolates from torch ginger (Etlingera elatior (Jack.) RM Smith)) root to some pathogenic fungal isolates. International Journal of Pharmacy and Technology Research, 9, 340-347. Tabarestani, M. S., Rahnama, K., Jahanshahi, M., Nasrollanejad, S., & Fatemi, M. H. (2016). Identification of Volatile Organic Compounds from Trichoderma virens (6011) by GC-MS and Separation of a Bioactive Compound via Nanotechnology. International Journal of Engineering-Transactions A: Basics, 29(10), 1347-1353. Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W., & Hyde, K. D. (2008). Chilli anthracnose disease caused by Colletotrichum species. Journal of Zhejiang University Science B,9(10), 764. Http://doi.org/10.1631/jzus.B0860007108 Timmerman, A. D., Kalisch, J. A., Korus, K. A., & Vantassel, S. M. (2014). Common Signs and Symptoms of Unhealthy Plants. University of Nebraska--Lincoln, Extension. Ting, A. S. Y., Mah, S. W., & Tee, C. S. (2010). Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum F. sp. cubense Race 4. American Journal of Agricultural and Biological Sciences, 5(2), 177-182. http://doi.org/10.3844/ajabssp.2010.177.182 Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-coverage ITS primers for the DNAbased identification of ascomycetes and basidiomycetes in environmental samples. PloS one, 7(7), e40863. Valdetaro, D. C., Oliveira, L. S., Guimarães, L. M., Harrington, T. C., Ferreira, M. A., Freitas, R. G., & Alfenas, A. C. (2015). Genetic variation, morphology and pathogenicity of Ceratocystis fimbriata on Hevea brasiliensis in Brazil. Tropical Plant Pathology, 40(3), 184-192. https://doi.org/10.1007/s40858-015-0036-6 Vandermolen, K. M., Raja, H. A., El-Elimat, T., & Oberlies, N. H. (2013). Evaluation of culture media for the production of secondary metabolites in a natural products screening program. Amb Express, 3(1), 71. Waing, K. G. D., Abella, E. A., Kalaw, S. P., Waing, F. P., & Galvez, C. T. (2015). Antagonistic interactions among different species of leaf litter fungi of Central Luzon State University. Plant Pathology and Quarantine Journal, 5, 122-130. http://doi.org/10.5943/ppq/5/2/9. Wang, Z., Nilsson, R. H., James, T. Y., Dai, Y., & Townsend, J. P. (2016). Future perspectives and challenges of fungal systematics in the age of big data. Biology of Microfungi, 1(5), 25−46. Ward, E., & Akrofi, A. Y. (1994). Identification of fungi in the Gaeumannomyces-Phialophora complex by RFLPs of PCR-amplified ribosomal DNAs. Mycological Research, 98(2), 219-224. Watanabe, M., Yonezawa, T., Lee, K. I., Kumagai, S., Sugita-Konishi, Y., Goto, K., & Hara-Kudo,Y. (2011). Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evolutionary Biology, 11(1), 322. http://doi.org/10.1186/1471-2148-11-322109 Wijedasa, M. H., & Liyanapathirana, L. V. C. (2012). Evaluation of an alternative slide culture technique for the morphological identification of fungal species. Sri Lankan Journal of Infectious Diseases, 2(2), 47. http://doi.org/10.4038/sljid.v2i2.4070 Woo, P. C. Y., Ngan, A. H. Y., Chui, H. K., Lau, S. K. P., & Yuen, K. Y. (2010). Agar block smear preparation: A novel method of slide preparation for preservation of native fungal structures for microscopic examination and long-term storage. Journal of Clinical Microbiology, 48(9), 3053– 3061. http://doi.org/10.1128/JCM.00917-10 Wu, Y., Yuan, J., E, Y., Raza, W., Shen, Q., & Huang, Q. (2015). Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens. Journal of Basic Microbiology, 55(9), 1104–1117. http://doi.org/10.1002/jobm.201400906 Yeole, G., Kotkar, H. M., & Mendki, P. S. (2016). Herbal fungicide to control Fusarium wilt in tomato plants. Biopesticide International, 12, 25-35. Zakaria, L. (2017). Mycotoxigenic Fusarium species from agricultural crops in Malaysia. Mycotoxins, 67(2), 67–75. http://doi.org/10.2520/myco.67_2_2 Zakaria, L., Nuraini, W., Aziz, W., & Pisang, D. (2018). Molecular Identification of Endophytic Fungi from Banana Leaves. Tropical Life Sciences Research, 29(2), 201–211. Zhang, X. F., Zhao, L., Xu Jr, S. J., Liu, Y. Z., Liu, H. Y., & Cheng, G. D. (2013). Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. Journal of Applied Microbiology, 114(4), 1054-1065. http://doi.org/10.1111/jam.12106 Zhu, T., Meng, T., Zhang, J., Zhong, W., Müller, C., & Cai, Z. (2015). Fungi-dominant heterotrophic nitrification in a subtropical forest soil of China. Journal of Soils and Sediments, 15(3), 705- 709. Živković, S., Stojanović, S., Ivanović, Ž., Gavrilović, V., Popović, T., & Balaž, J. (2010). Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Archives of Biological Sciences, 62(3), 611-623.