Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Fungicides from River Water

Modern agricultural production depends heavily on the employment of agrochemicals, including artificial and natural fungicides. The utilization of these fungicides can bring about event of deposits of these chemicals, and their metabolites, in each segments of environment, in particular water and so...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Salma, Bakhtiar
التنسيق: أطروحة
اللغة:English
منشور في: 2019
الموضوعات:
الوصول للمادة أونلاين:http://ir.unimas.my/id/eprint/28795/1/Salma.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id my-unimas-ir.28795
record_format uketd_dc
institution Universiti Malaysia Sarawak
collection UNIMAS Institutional Repository
language English
topic Q Science (General)
QD Chemistry
spellingShingle Q Science (General)
QD Chemistry
Salma, Bakhtiar
Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Fungicides from River Water
description Modern agricultural production depends heavily on the employment of agrochemicals, including artificial and natural fungicides. The utilization of these fungicides can bring about event of deposits of these chemicals, and their metabolites, in each segments of environment, in particular water and soil. Their presence in the environment is a worldwide known contamination problem. Depending on the chemical nature and level of contamination, these fungicides can have severe effects on both the terrestrial as well as aquatic life and eventually on humans. The latest variety of high selective binding efficiency adsorbents, molecularly imprinted polymers (MIPs), having excessive sample load capacity, high binding selectivity, low cost and simple preparation, are wide applied for preconcentration and high efficient separation of small analytes in different matrices. MIPs are synthetic polymers (artificial receptors) having extremely high recognition ability for template molecules. Fungicides of interest in this study were 2-phenylphenol, 2, 4, 6-trichlorophenol and thymol. Therefore, three set of imprinted polymers were prepared using 2-phenylphenol, 2, 4, 6-trichlorophenol and thymol as template molecules for selective extraction of these fungicides from river water samples. Three set of MIPs using 2-phenylphenol, 2, 4, 6-trichlorophenol or thymol as template molecules were synthesized using precipitation polymerization via non-covalent approach. Functional monomers used were styrene, methaacrylic acid, acrylamide, the crosslinker used were divinylbenzene, ethylene glycol methacrylic acid and N,N-bismethylene acrylamide for 2-phenylphenol, 2, 4, 6-trichlorophenol and thymol respectively and AIBN was used as initiator. The non-imprinted polymer (NIP) were synthesized in the same procedure but with the omission of template molecule. After the extraction of template molecules with suitable extraction solutions, a number of parameters that can affect selective binding efficiency of MIPs such as pH of the solution, initial concentration, MIP dosage, contact time, agitation rate, were optimized. The optimal parameters for 2-phenylphenol, 2, 4, 6-trichlorophenol and thymol with efficiencies were: pH 7 (99.45%, 85%, 92%) , optimal initial concentration 25 ppm (99%), 30 (92.26%), 20 (96%) , MIP dosage 100 mg (99.45%), 200 mg (87%), 300 mg (94%), contact time 90 min (99 %, 85%, 94%), and agitation speed was 250 rpm (99%, 87%, 92%) respectively. All the MIPs and NIPs were characterized by FTIR and EDX for their chemical and elemental analysis. The morphological characterization of all the MIPs and NIPs were recorded by using SEM and for surface area, pores size and pores volume determination BET was used. All the imprinted polymers were applied on real samples that is river water samples all the MIPs showed good binding efficiencies in these samples for 2-phenylphenol the efficiencies were 88%, 2, 4, 6- trichlorophenol 94%, thymol 98 % in river water respectively. All the MIPs showed better efficiencies as compared to their structural analogues.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Salma, Bakhtiar
author_facet Salma, Bakhtiar
author_sort Salma, Bakhtiar
title Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Fungicides from River Water
title_short Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Fungicides from River Water
title_full Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Fungicides from River Water
title_fullStr Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Fungicides from River Water
title_full_unstemmed Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Fungicides from River Water
title_sort synthesis of molecularly imprinted polymers for selective extraction of fungicides from river water
granting_institution Universiti Malaysia Sarawak (UNIMAS)
granting_department Faculty of Resource Science and Technology
publishDate 2019
url http://ir.unimas.my/id/eprint/28795/1/Salma.pdf
_version_ 1783728362129195008
spelling my-unimas-ir.287952023-07-10T03:16:42Z Synthesis of Molecularly Imprinted Polymers for Selective Extraction of Fungicides from River Water 2019-07-15 Salma, Bakhtiar Q Science (General) QD Chemistry Modern agricultural production depends heavily on the employment of agrochemicals, including artificial and natural fungicides. The utilization of these fungicides can bring about event of deposits of these chemicals, and their metabolites, in each segments of environment, in particular water and soil. Their presence in the environment is a worldwide known contamination problem. Depending on the chemical nature and level of contamination, these fungicides can have severe effects on both the terrestrial as well as aquatic life and eventually on humans. The latest variety of high selective binding efficiency adsorbents, molecularly imprinted polymers (MIPs), having excessive sample load capacity, high binding selectivity, low cost and simple preparation, are wide applied for preconcentration and high efficient separation of small analytes in different matrices. MIPs are synthetic polymers (artificial receptors) having extremely high recognition ability for template molecules. Fungicides of interest in this study were 2-phenylphenol, 2, 4, 6-trichlorophenol and thymol. Therefore, three set of imprinted polymers were prepared using 2-phenylphenol, 2, 4, 6-trichlorophenol and thymol as template molecules for selective extraction of these fungicides from river water samples. Three set of MIPs using 2-phenylphenol, 2, 4, 6-trichlorophenol or thymol as template molecules were synthesized using precipitation polymerization via non-covalent approach. Functional monomers used were styrene, methaacrylic acid, acrylamide, the crosslinker used were divinylbenzene, ethylene glycol methacrylic acid and N,N-bismethylene acrylamide for 2-phenylphenol, 2, 4, 6-trichlorophenol and thymol respectively and AIBN was used as initiator. The non-imprinted polymer (NIP) were synthesized in the same procedure but with the omission of template molecule. After the extraction of template molecules with suitable extraction solutions, a number of parameters that can affect selective binding efficiency of MIPs such as pH of the solution, initial concentration, MIP dosage, contact time, agitation rate, were optimized. The optimal parameters for 2-phenylphenol, 2, 4, 6-trichlorophenol and thymol with efficiencies were: pH 7 (99.45%, 85%, 92%) , optimal initial concentration 25 ppm (99%), 30 (92.26%), 20 (96%) , MIP dosage 100 mg (99.45%), 200 mg (87%), 300 mg (94%), contact time 90 min (99 %, 85%, 94%), and agitation speed was 250 rpm (99%, 87%, 92%) respectively. All the MIPs and NIPs were characterized by FTIR and EDX for their chemical and elemental analysis. The morphological characterization of all the MIPs and NIPs were recorded by using SEM and for surface area, pores size and pores volume determination BET was used. All the imprinted polymers were applied on real samples that is river water samples all the MIPs showed good binding efficiencies in these samples for 2-phenylphenol the efficiencies were 88%, 2, 4, 6- trichlorophenol 94%, thymol 98 % in river water respectively. All the MIPs showed better efficiencies as compared to their structural analogues. Universiti Malaysia Sarawak (UNIMAS) 2019-07 Thesis http://ir.unimas.my/id/eprint/28795/ http://ir.unimas.my/id/eprint/28795/1/Salma.pdf text en validuser phd doctoral Universiti Malaysia Sarawak (UNIMAS) Faculty of Resource Science and Technology Abdelkreem, M. (2013). Adsorption of phenol from industrial wastewater using olive mill waste. APCBEE Procedia, 5, 349-357. Abecassis-Wolfovich, M., Landau, M. V., Brenner, A., & Herskowitz, M. (2007). Low-temperature combustion of 2, 4, 6-trichlorophenol in catalytic wet oxidation with nanocasted Mn–Ce-oxide catalyst. Journal of Catalysis, 247(2), 201-213. Advincula, R. C. (2011). Engineering molecularly imprinted polymer (MIP) materials: Developments and challenges for sensing and separation technologies. Korean Journal of Chemical Engineering, 28(6), 1313-1321. Alexander, C., Andersson, H. S., Andersson, L. I., Ansell, R. J., Kirsch, N., Nicholls, I. A., Mahony, J. O., & Whitcombe, M. J. (2006). Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. Journal of Molecular Recognition: An Interdisciplinary Journal, 19(2), 106-180. Alexander, C., Davidson, L., & Hayes, W. (2003). Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron, 59(12), 2025-2058. Allender, C. J. (2005). Molecularly imprinted polymers: Technology and applications. Advanced Drug Delivery Reviews, 57(12), 1731-1732. Alvarez-Lorenzo, C., & Concheiro, A., (2004). Molecularly imprinted polymers for drug delivery. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804(1), 231-245. Ansell, R. J., & Wang, D. (2009). Imprinted polymers for chiral resolution of (±)-ephedrine. Part 3: NMR predictions and HPLC results with alternative functional monomers. Analyst, 134(3), 564-576. Arabzadeh, N., & Abdouss, M. (2010). Synthesis and characterization of molecularly imprinted polymers for selective solid-phase extraction of pseudoephedrine. Colloid Journal, 72(4), 446-455. Arshady, R., & Mosbach, K. (1981). Synthesis of substrate‐selective polymers by host‐guest polymerization. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 182(2), 687-692. Atta, N. F., & Abdel-Mageed, A. M. (2009). Smart electrochemical sensor for some neurotransmitters using imprinted sol–gel films. Talanta, 80(2), 511-518. Baggiani, C., Baravalle, P., Giraudi, G., & Tozzi, C. (2007). Molecularly imprinted solid-phase extraction method for the high-performance liquid chromatographic analysis of fungicide pyrimethanil in wine. Journal of Chromatography A, 1141(2), 158-164 Bagheri, H., & Mohammadi, A. (2003). Pyrrole-based conductive polymer as the solid-phase extraction medium for the preconcentration of environmental pollutants in water samples followed by gas chromatography with flame ionization and mass spectrometry detection. Journal of Chromatography A, 1015(1-2), 23-30. Bagheri, H., Mohammadi, A., & Salemi, A. (2004). On-line trace enrichment of phenolic compounds from water using a pyrrole-based polymer as the solid-phase extraction sorbent coupled with high-performance liquid chromatography. Analytica Chimica Acta, 513(2), 445-449. Barrios, C. A., Carrasco, S., Francesca, M., Yurrita, P., Navarro-Villoslada, F., & Moreno-Bondi, M. C. (2012). Molecularly imprinted polymer for label-free integrated optical waveguide bio (mimetic) sensors. Sensors and Actuators B: Chemical, 161(1), 607-614. Batra, D., & Shea, K. J. (2003). Combinatorial methods in molecular imprinting. Current Opinion in Chemical Biology, 7(3), 434-442. Bayoudh,C., S., Sherrington, D., & Ensing, K. (2000). Use of molecularly imprinted solid-phase extraction for the selective clean-up of clenbuterol from calf urine. Journal of Chromatography A, 889(1-2), 105-110. Bazrafshan, E., Amirian, P., Mahvi, A. H., & Ansari-Moghaddam, A. (2016). Application of adsorption process for phenolic compounds removal from aqueous environments: a systematic review. Global NEST Journal, 18(1), 146-163. Bazrafshan, E., Khoshnamvand, N., & Mahvi, A. H. (2015). Fluoride removal from aqueous environments by ZnCl2-treated eucalyptus leaves as a natural adsorbent. Fluoride, 48(4), 315-320. Bazrafshan, E., Mostafapour, F. K., Hosseini, A. R., Raksh Khorshid, A., & Mahvi, A. H. (2013). Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. Journal of Chemistry, 2013(16), 1-8. Bazrafshan, E., Zarei, A. A., Nadi, H., & Zazouli, M. A. (2014). Adsorptive removal of Methyl Orange and Reactive Red 198 dyes by Moringa peregrina ash. Indian Journal of Chemical Technology, 21(2), 105-113. Bhawani, S. A., Sen, T. S., & Ibrahim, M. N. M. (2018). Synthesis of molecular imprinting polymers for extraction of gallic acid from urine. Chemistry Central Journal, 12(1), 15-19. Bjarnason, B., Chimuka, L., & Ramström, O. (1999). On-line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment. Analytical Chemistry, 71(11), 2152-2156. Blanco, E., Casais, M. C., Mejuto, M. C., & Cela, R. (2005). Analysis of tetrabromobisphenol A and other phenolic compounds in water samples by non-aqueous capillary electrophoresis coupled to photodiode array ultraviolet detection. Journal of Chromatography A, 1071(1-2), 205-211. Bomhard, E. M., Brendler-Schwaab, S. Y., Freyberger, A., Herbold, B. A., Leser, K. H., & Richter, M. (2002). O-phenylphenol and its sodium and potassium salts: a toxicological assessment. Critical Reviews in Toxicology, 32(6), 551-626. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American chemical society, 60(2), 309-319. Bystroem, S. E., Boerje, A., & Akermark, B. (1993). Selective reduction of steroid 3-and 17-ketones using lithium aluminum hydride activated template polymers. Journal of the American Chemical Society, 115(5), 2081-2083. Cacho, C., Schweitz, L., Turiel, E., & Pérez-Conde, C. (2008). Molecularly imprinted capillary electrochromatography for selective determination of thiabendazole in citrus samples. Journal of Chromatography A, 1179(2), 216-223. Cacho, C., Turiel, E., & Pérez-Conde, C. (2009). Molecularly imprinted polymers: an analytical tool for the determination of benzimidazole compounds in water samples. Talanta, 78(3), 1029-1035. Cacho, C., Turiel, E., Martin-Esteban, A., Ayala, D., & Perez-Conde, C. (2006). Semi-covalent imprinted polymer using propazine methacrylate as template molecule for the clean-up of triazines in soil and vegetable samples. Journal of Chromatography A, 1114(2), 255-262. Caro, E., Marcé, R. M., Cormack, P. A., Sherrington, D. C., & Borrull, F. (2003). On-line solid-phase extraction with molecularly imprinted polymers to selectively extract substituted 4-chlorophenols and 4-nitrophenol from water. Journal of Chromatography A, 995(1-2), 233-238. Caro, E., Masqué, N., Marcé, R. M., Borrull, F., Cormack, P. A., & Sherrington, D. C. (2002). Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples. Journal of Chromatography A, 963(1-2), 169-178. Carter, S. R., & Rimmer, S. (2002). Molecular recognition of caffeine by shell molecular imprinted core–shell polymer particles in aqueous media. Advanced Materials, 14(9), 667-670. Carter, S., Lu, S. Y., & Rimmer, S. (2003). Core-shell molecular imprinted polymer colloids. Supramolecular Chemistry, 15(3), 213-220. Chen, L., Xu, S., & Li, J. (2011). Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews, 40(5), 2922-2942. Chen, W., Duan, L., Wang, L., & Zhu, D. (2008). Adsorption of hydroxyl-and amino-substituted aromatics to carbon nanotubes. Environmental Science & Technology, 42(18), 6862-6868. Chow, J., Leong, A., & Bhawani, S. A. (2016). Synthesis and characterization of molecular imprinting polymer microspheres of cinnamic acid: extraction of cinnamic acid from spiked blood plasma. International Journal of Polymer Science, 2016(5), 261-265. Cirillo, G., Iemma, F., Puoci, F., Parisi, O. I., Curcio, M., Spizzirri, U. G., & Picci, N. (2009). Imprinted hydrophilic nanospheres as drug delivery systems for 5-fluorouracil sustained release. Journal of Drug Targeting, 17(1), 72-77. Cirillo, G., Parisi, O. I., Curcio, M., Puoci, F., Iemma, F., Spizzirri, U. G., & Picci, N. (2010). Molecularly imprinted polymers as drug delivery systems for the sustained release of glycyrrhizic acid. Journal of Pharmacy and Pharmacology, 62(5), 577-582. Cormack, P. A., & Elorza, A. Z. (2004). Molecularly imprinted polymers: synthesis and characterisation. Journal of Chromatography B, 804(1), 173-182. Cunliffe, D., Kirby, A., & Alexander, C. (2005). Molecularly imprinted drug delivery systems. Advanced Drug Delivery Reviews, 57(12), 1836-1853. Curcio, P., Zandanel, C., Wagner, A., Mioskowski, C., & Baati, R. (2009). Semi‐Covalent Surface Molecular Imprinting of Polymers by One‐Stage Mini‐emulsion Polymerization: Glucopyranoside as a Model Analyte. Macromolecular Bioscience, 9(6), 596-604. Dakhil, I. H. (2013). Removal of phenol from industrial wastewater using sawdust. International Journal of Engineering and Science, 3(1), 25-31. Damen, J., & Neckers, D. C. (1980). Memory of synthesized vinyl polymers for their origins. The Journal of Organic Chemistry, 45(8), 1382-1387. Das, K., Penelle, J., & Rotello, V. M. (2003). Selective picomolar detection of hexachlorobenzene in water using a quartz crystal microbalance coated with a molecularly imprinted polymer thin film. Langmuir, 19(9), 3921-3925. De Barros, L. A., Martins, I., & Rath, S. (2010). A selective molecularly imprinted polymer-solid phase extraction for the determination of fenitrothion in tomatoes. Analytical and Bioanalytical Chemistry, 397(3), 1355-1361. Dekhil, A. B., Hannachi, Y., Ghorbel, A., & Boubaker, T. (2011). Comparative study of the removal of cadmium from aqueous solution by using low-cost adsorbents. Journal of Environmental Science and Technology, 4(5), 520-533. Díaz-Díaz, G., Diñeiro, Y., Menéndez, M. I., Blanco-López, M. C., Lobo-Castañón, M. J., Miranda-Ordieres, A. J., & Tuñón-Blanco, P. (2011). Molecularly imprinted catalytic polymers with biomimetic chloroperoxidase activity. Polymer, 52(12), 2468-2473. Dirion, B., Cobb, Z., Schillinger, E., Andersson, L. I., & Sellergren, B. (2003). Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design. Journal of the American Chemical Society, 125(49), 15101-15109. Dopico‐García, M. S., Cela‐Pérez, C., López‐Vilariño, J. M., González‐Rodríguez, M. V., & Barral‐Losada, L. F. (2011). An approach to imprint irganox 1076: potential application to the specific migration test in olive oil. Journal of Applied Polymer Science, 119(5), 2866-2874. Dżygiel, P., O’Donnell, E., Fraier, D., Chassaing, C., & Cormack, P. A. (2007). Evaluation of water-compatible molecularly imprinted polymers as solid-phase extraction sorbents for the selective extraction of sildenafil and its desmethyl metabolite from plasma samples. Journal of Chromatography B, 853(1-2), 346-353. Eastmond, D. A., & Balakrishnan, S. (2010). Genotoxicity of pesticides. In Hayes' Handbook of Pesticide Toxicology, 357-380. Ekpete, O. A., Horsfall, M., & Tarawou, T. (2010). Potential of fluted pumpkin and commercial activated carbons for phenol removal in aqueous systems. ARPN Journal of Engineering and Applied Sciences, 5(9), 39-47. El-Geundi, M. S. (1991). Homogeneous surfacesurface diffusion model for the adsorption of basic dyestuffs onto natural clay in batch adsorbers. Adsorption Science and Technology, 8(4), 217-225. El-Harby, N. F., Ibrahim, S., & Mohamed, N. A. (2017). Adsorption of Congo red dye onto antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels. Water Science and Technology, 76(10), 2719-2732. Ellwanger, A., Berggren, C., Bayoudh, S., Crecenzi, C., Karlsson, L., Owens, P. K., Ensing, K., Cormack, P., Sherrington, D., & Sellergren, B. (2001). Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. Analyst, 126(6), 784-792. Esfandyari‐Manesh, M., Javanbakht, M., Atyabi, F., & Dinarvand, R. (2012). Synthesis and evaluation of uniformly sized carbamazepine‐imprinted microspheres and nanospheres prepared with different mole ratios of methacrylic acid to methyl methacrylate for analytical and biomedical applications. Journal of Applied Polymer Science, 125(3), 1804-1813. Esfandyari‐Manesh, M., Javanbakht, M., Atyabi, F., Badiei, A., & Dinarvand, R. (2011). Effect of porogenic solvent on the morphology, recognition and release properties of carbamazepine‐molecularly imprinted polymer nanospheres. Journal of Applied Polymer Science, 121(2), 1118-1126. Faraji, H. (2005). β-Cyclodextrin-bonded silica particles as the solid-phase extraction medium for the determination of phenol compounds in water samples followed by gas chromatography with flame ionization and mass spectrometry detection. Journal of Chromatography A, 1087(1-2), 283-288. Farooq, U., Kozinski, J.A., Khan, M.A., & Athar, M. (2010). Biosorption of heavy metal ions using wheat based biosorbents–a review of the recent literature. Bioresource Technology, 101(14), 5043-5053. Farzi, G., Mortezaei, M., & Badiei, A. (2011). Relationship between droplet size and fluid flow characteristics in miniemulsion polymerization of methyl methacrylate. Journal of Applied Polymer Science, 120(3), 1591-1596. Feás, X., Seijas, J. A., Vázquez-Tato, M. P., Regal, P., Cepeda, A., & Fente, C. (2009). Synthesis of molecularly imprinted polymers: Molecular recognition of cyproheptadine using original print molecules and azatadine as dummy templates. Analytica Chimica Acta, 631(2), 237-244. Federal Register. EPA Method 604, Phenols, Part VIII, 40 CFR Part 136; Environmental Protection Agency: Washington, DC, USA, 1984, 58. Federal Register. EPA Method 625, Base/Neutrals and Acids, Part VIII, 40 CFR Part 136; Environmental Protection Agency: Washington, DC, USA, 1984, 153. Federal Register. EPA Method 8041, Phenols by Gas Chromatography: Capillary Column Technique; Environmental Protection Agency: Washington, DC, USA, 1995, 1. Federal Register; EPA method 3540B, Soxhlet extraction, Revision 2; EPA: Washington, DC, USA, September, 1994. Figueiredo, E. C., Tarley, C. R. T., Kubota, L. T., Rath, S., & Arruda, M. A. Z. (2007). On-line molecularly imprinted solid phase extraction for the selective spectrophotometric determination of catechol. Microchemical Journal, 85(2), 290-296. Fitzhenry, L. (2011). Development of Molecularly Imprinted Polymers for Corticosteroids (Doctoral dissertation, Waterford Institute of Technology). Foo, K. Y., & Hameed, B. H. (2012). Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresource Technology, 111, 425-432. Garcia, R., Pinel, C., Madic, C., & Lemaire, M. (1998). Ionic imprinting effect in gadolinium/lanthanum separation. Tetrahedron Letters, 39(47), 8651-8654. García-Calzón, J. A., & Díaz-García, M. E. (2007). Characterization of binding sites in molecularly imprinted polymers. Sensors and Actuators B: Chemical, 123(2), 1180-1194. Ghaedi, M., Ramazani, S., & Roosta, M. (2011). Gold nanoparticle loaded activated carbon as novel adsorbent for the removal of Congo red. Indian Journal of Science and Technology, 4(10), 1208-1217. Ghezali, S., Mahdad-Benzerdjeb, A., Ameri, M., & Bouyakoub, A. Z. (2018). Adsorption of 2, 4, 6-trichlorophenol on bentonite modified with benzyldimethyltetradecylammonium chloride. Chemistry International, 4(1), 24-32. Gong, X. Y., & Cao, X. J. (2011). Preparation of molecularly imprinted polymers for artemisinin based on the surfaces of silica gel. Journal of Biotechnology, 153(1-2), 8-14. Govindarajan, C., Ramasubramaniam, S., Gomathi, T., & Sudha, P. N. (2011). Studies on adsorption behavior of cadmium onto nanochitosan carboxymethyl cellulose blend. Archives of Applied Science Research, 3, 572-580. Haginaka, J., Sanbe, H. 1999 Uniform-sized molecularly imprinted polymers for bisphenol A Chemistry Letters 28, (8), 757-758. Haginaka, J., Tabo, H., & Kagawa, C. (2008). Uniformly sized molecularly imprinted polymers for d-chlorpheniramine: Influence of a porogen on their morphology and enantioselectivity. Journal of Pharmaceutical and Biomedical Analysis, 46(5), 877-881. Hamdaoui, O., & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials, 147(1-2), 381-394. Hameed, B. H. (2007). Equilibrium and kinetics studies of 2, 4, 6-trichlorophenol adsorption onto activated clay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 307(1-3), 45-52. Hameed, B. H., & Rahman, A. A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal of Hazardous Materials, 160(2-3), 576-581. Hart, A. P., & Dasgupta, A. (1997). A novel derivatization of phenol after extraction from human serum using perfluorooctanoyl chloride for gas chromatography-mass spectrometric confirmation and quantification. Journal of Forensic Science, 42(4), 693-696. He, C., Long, Y., Pan, J., Li, K., & Liu, F. (2008). Molecularly imprinted silica prepared with immiscible ionic liquid as solvent and porogen for selective recognition of testosterone. Talanta, 74(5), 1126-1131. He, D., Zhang, Z., Zhou, H., & Huang, Y. (2006). Micro flow sensor on a chip for the determination of terbutaline in human serum based on chemiluminescence and a molecularly imprinted polymer. Talanta, 69(5), 1215-1220. He, J. F., Zhu, Q. H., & Deng, Q. Y. (2007). Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(5), 1297-1305. Hing-Biu, L., Peart, T. E., & Hong-You, R. L. (1993). Determination of phenolics from sediments of pulp mill origin by in situ supercritical carbon dioxide extraction and derivatization. Journal of Chromatography A, 636(2), 263-270. Hiratani, H., & Alvarez-Lorenzo, C. (2002). Timolol uptake and release by imprinted soft contact lenses made of N, N-diethylacrylamide and methacrylic acid. Journal of Controlled Release, 83(2), 223-230. Hiratani, H., Fujiwara, A., Tamiya, Y., Mizutani, Y., & Alvarez-Lorenzo, C. (2005). Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials, 26(11), 1293-1298. Hiratani, H., Mizutani, Y., & Alvarez‐Lorenzo, C. (2005). Controlling drug release from imprinted hydrogels by modifying the characteristics of the imprinted cavities. Macromolecular Bioscience, 5(8), 728-733. Holland, N., Frisby, J., Owens, E., Hughes, H., Duggan, P., & McLoughlin, P. (2010). The influence of polymer morphology on the performance of molecularly imprinted polymers. Polymer, 51(7), 1578-1584. Hu, Y., Liu, R., Zhang, Y., & Li, G. (2009). Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system. Talanta, 79(3), 576-582. Huang, C. Y., Syu, M. J., Chang, Y. S., Chang, C. H., Chou, T. C., & Liu, B. D. (2007). A portable potentiostat for the bilirubin-specific senssensor prepared from molecular imprinting. Biosensors and Bioelectronics, 22(8), 1694-1699. Huang, H. C., Lin, C. I., Joseph, A. K., & Der Lee, Y. (2004). Photo-lithographically impregnated and molecularly imprinted polymer thin film for biosensor applications. Journal of Chromatography A, 1027(1-2), 263-268. Huang, J. T., Alquier, L., Kaisa, J. P., Reed, G., Gilmor, T., & Vas, G. (2012). Method development and validation for the determination of 2, 4, 6-tribromoanisole, 2, 4, 6-tribromophenol, 2, 4, 6-trichloroanisole, and 2, 4, 6-trichlorophenol in various drug products using stir bar sorptive extraction and gas chromatography–tandem mass spectrometry detection. Journal of Chromatography A, 1262, 196-204. Huang, J. T., Zheng, S. H., & Zhang, J. Q. (2004). Molecularly imprinting of polymeric nucleophilic catalysts containing 4-alkylaminopyridine functions. Polymer, 45(12), 4349-4354. Huang, X., Yin, Y., Liu, Y., Bai, X., Zhang, Z., Xu, J., Shen, J., & Liu, J. (2009). Incorporation of glutathione peroxidase active site into polymer based on imprinting strategy. Biosensors and Bioelectronics, 25(3), 657-660. Ide, Y., Nakasato, Y., & Ogawa, M. (2010). Molecular recognitive photocatalysis driven by the selective adsorption on layered titanates. Journal of the American Chemical Society, 132(10), 3601-3604. İpek, İ. Y., Kabay, N., Yüksel, M., Yapıcı, D., & Yüksel, Ü. (2012). Application of adsorption–ultrafiltration hybrid method for removal of phenol from water by hypercrosslinked polymer adsorbents. Desalination, 306, 24-28. Iscen, C.F., Kiran, I., & Ilhan, S. (2007). Biosorption of Reactive Black 5 dye by Penicillium restrictum: The kinetic study. Journal of Hazardous Materials, 43(1), 335-340. Jauregui, O., & Galceran, M. T. (1997). Determination of phenols in water by on-line solid-phase disk extraction and liquid chromatography with electrochemical detection. Analytica Chimica Acta, 340(1-3), 191-199. Jiang, J., Song, K., Chen, Z., Zhou, Q., Tang, Y., Gu, F., Zuo, X., & Xu, Z. (2011). Novel molecularly imprinted microsphere using a single chiral monomer and chirality-matching (S)-ketoprofen template. Journal of Chromatography A, 1218(24), 3763-3770. Jin, M., Chen, X., & Pan, B. (2006). Simultaneous determination of 19 chlorophenols in water by liquid chromatography‐mass spectrometry with solid‐phase extraction. Journal of Liquid Chromatography & Related Technologies, 29(9), 1369-1380. Karim, K., Breton, F., Rouillon, R., Piletska, E. V., Guerreiro, A., Chianella, I., & Piletsky, S. A. (2005). How to find effective functional monomers for effective molecularly imprinted polymers?. Advanced Drug Delivery Reviews, 57(12), 1795-1808. Kawaguchi, M., Hayatsu, Y., Nakata, H., Ishii, Y., Ito, R., Saito, K., & Nakazawa, H. (2005). Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography–mass spectrometry for trace analysis of bisphenol A in water sample. Analytica Chimica Acta, 539(1-2), 83-89. Keçili, R., Özcan, A. A., Ersöz, A., Hür, D., Denizli, A., & Say, R. (2011). Superparamagnetic nanotraps containing MIP based mimic lipase for biotransformations uses. Journal of Nanoparticle Research, 13(5), 2073-2079. Keith, L., & Telliard, W. (1979). ES&T special report: priority pollutants: In a perspective view. Environmental Science and Technology, 13(4), 416-423. Kempe, H., & Kempe, M. (2004). Novel method for the synthesis of molecularly imprinted polymer bead libraries. Macromolecular Rapid Communications, 25(1), 315-320. Khaniabadi, Y. O., Mohammadi, M. J., Shegerd, M., Sadeghi, S., Saeedi, S., & Basiri, H. (2017). Removal of Congo red dye from aqueous solutions by a low-cost adsorbent: activated carbon prepared from Aloe vera leaves shell. Environmental Health Engineering and Management Journal, 4(1), 29-35. Ki, C. D., Oh, C., Oh, S. G., & Chang, J. Y. (2002). The use of a thermally reversible bond for molecular imprinting of silica spheres. Journal of the American Chemical Society, 124(50), 14838-14839. Kirsch, N., Alexander, C., Davies, S., & Whitcombe, M. J. (2004). Sacrificial spacer and non-covalent routes toward the molecular imprinting of “poorly-functionalized” N-heterocycles. Analytica Chimica Acta, 504(1), 63-71. Klein, J. U., Whitcombe, M. J., Mulholland, F., & Vulfson, E. N. (1999). Template‐mediated synthesis of a polymeric receptor specific to amino acid sequences. Angewandte Chemie International Edition, 38(13‐14), 2057-2060. Komiyama M, Takeuchi T, Mukawa T, Asanuma H (EDX.) Wiley-VCH Verlag GmbH & Co. KGaA (2004) Book chapter, Recent Challenges and Progress, In: Molecular Imprinting, Weinheim, Ch.8, 119-139. Kryscio, D. R., & Peppas, N. A. (2009). Mimicking biological delivery through feedback‐controlled drug release systems based on molecular imprinting. American Institute of Chemical Engineers AICHE Journal, 55(6), 1311-1324. Kubo, T., Hosoya, K., Nomachi, M., Tanaka, N., & Kaya, K. (2005). Preparation of a novel molecularly imprinted polymer using a water-soluble crosslinking agent. Analytical and Bioanalytical Chemistry, 382(7), 1698-1701. Kubo, T., Hosoya, K., Sano, T., Nomachi, M., Tanaka, N., & Kaya, K. (2005). Selective separation of brominated bisphenol A homologues using a polymer-based medium prepared by the fragment imprinting technique. Analytica Chimica Acta, 549(1-2), 45-50. Kubo, T., Matsumoto, H., Shiraishi, F., Nomachi, M., Nemoto, K., Hosoya, K., & Kaya, K. (2007). Selective separation of hydroxy polychlorinated biphenyls (HO-PCBs) by the structural recognition on the molecularly imprinted polymers: Direct separation of the thyroid hormone active analogues from mixtures. Analytica Chimica Acta, 589(2), 180-185. Kubo, T., Tanaka, N., & Hosoya, K. (2004). Target-selective ion-exchange media for highly hydrophilic compounds: a possible solution by use of the “interval immobilization technique”. Analytical and Bioanalytical Chemistry, 378(1), 84-88. Kugimiya, A., & Takei, H. (2008). Selectivity and recovery performance of phosphate-selective molecularly imprinted polymer. Analytica Chimica Acta, 606(2), 252-256. Kyzas, G. Z., Bikiaris, D. N., & Lazaridis, N. K. (2009). Selective separation of basic and reactive dyes by molecularly imprinted polymers (MIPs). Chemical Engineering Journal, 149(1-3), 263-272. Lanza, F., Rüther, M., Hall, A. J., Dauwe, C., & Sellergren, B. (2002). Studies on the process of formation, nature and stability of binding sites in molecularly imprinted polymers. MRS Online Proceedings Library Archive, 723. Lavignac, N., Allender, C. J., & Brain, K. R. (2004). Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays. Analytica Chimica Acta, 510(2), 139-145. Le Moullec, S., Begos, A., Pichon, V., & Bellier, B. (2006). Selective extraction of organophosphorus nerve agent degradation products by molecularly imprinted solid-phase extraction. Journal of Chromatography A, 1108(1), 7-13. Li, J., Zu, B., Zhang, Y., Guo, X., & Zhang, H. (2010). One‐pot synthesis of surface‐functionalized molecularly imprinted polymer microspheres by iniferter‐induced “living” radical precipitation polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 48(15), 3217-3228. Li, K., & Stöver, H. D. (1993). Synthesis of monodisperse poly (divinylbenzene) microspheres. Journal of Polymer Science Part A: Polymer Chemistry, 31(13), 3257-3263. Li, P., Wang, X., Allinson, G., Li, X., & Xiong, X. (2009). Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. Journal of Hazardous Materials, 161(1), 516-521. Li, Y., Yang, H. H., You, Q. H., Zhuang, Z. X., & Wang, X. R. (2006). Protein recognition via surface molecularly imprinted polymer nanowires. Analytical Chemistry, 78(1), 317-320. Liang, S., Wan, J., Zhu, J., & Cao, X. (2010). Effects of porogens on the morphology and enantioselectivity of core–shell molecularly imprinted polymers with ursodeoxycholic acid. Separation and Purification Technology, 72(2), 208-216. Lin, H. Y., Rick, J., & Chou, T. C. (2007). Optimizing the formulation of a myoglobin molecularly imprinted thin-film polymer—formed using a micro-contact imprinting method. Biosensors and Bioelectronics, 22(12), 3293-3301. Lindahl, S., Ekman, A., Khan, S., Wennerberg, C., Börjesson, P., Sjöberg, P. J., & Turner, C. (2010). Exploring the possibility of using a thermostable mutant of β-glucosidase for rapid hydrolysis of quercetin glucosides in hot water. Green Chemistry, 12(1), 15159-168. Liu, Y. T., Deng, J., Xiao, X. L., Ding, L., Yuan, Y. L., Li, H., & Wang, L. L. (2011). Electrochemical sensor based on a poly (para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochimica Acta, 56(12), 4595-4602. Liu, Y., Hoshina, K., & Haginaka, J. (2010). Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization. Talanta, 80(5), 1713-1718. Lorenzo, R., Carro, A., Alvarez-Lorenzo, C., & Concheiro, A. (2011). To remove or not to remove? The challenge of extracting the template to make the cavities available in molecularly imprinted polymers (MIPs). International Journal of Molecular Sciences, 12(7), 4327-4347. Lu, C. H., Zhou, W. H., Han, B., Yang, H. H., Chen, X., & Wang, X. R. (2007). Surface-imprinted core− shell nanoparticles for sorbent assays. Analytical Chemistry, 79(14), 5457-5461. Lu, Y., Li, C., Wang, X., Sun, P., & Xing, X. (2004). Influence of polymerization temperature on the molecular recognition of imprinted polymers. Journal of Chromatography B, 804(1), 53-59. Ma, J., Yuan, L., Ding, M., Wang, S., Ren, F., Zhang, J., & Zhou, X. (2011). The study of core–shell molecularly imprinted polymers of 17β-estradiol on the surface of silica nanoparticles. Biosensors and Bioelectronics, 26(5), 2791-2795. Maddila, S., Dasireddy, V. D., Oseghe, E. O., & Jonnalagadda, S. B. (2013). Ozone initiated dechlorination and degradation of trichlorophenol using Ce–Zr loaded metal oxides as catalysts. Applied Catalysis B: Environmental, 142, 129-141. Madikizela, L. M., Zunngu, S. S., Mlunguza, N. Y., Tavengwa, N. T., Mdluli, P. S., & Chimuka, L. (2018). Application of molecularly imprinted polymer designed for the selective extraction of ketoprofen from wastewater. Water SA, 44(3), 406-418. Mahony, J. O., Nolan, K., Smyth, M. R., & Mizaikoff, B. (2005). Molecularly imprinted polymers—potential and challenges in analytical chemistry. Analytical Chimica Acta, 534(1), 31-39. Mahvi, A. H., Maleki, A., & Eslami, A. K. B. A. R. (2004). Potential of rice husk and rice husk ash for phenol removal in aqueous systems. American Journal of Applied Sciences, 1(4), 321-326. Malosse, L., Buvat, P., Adès, D., & Siove, A. (2008). Detection of degradation products of chemical warfare agents by highly porous molecularly imprinted microspheres. Analyst, 133(5), 588-595. Mansfield, E., Kar, A., Quinn, T. P., & Hooker, S. A. (2010). Quartz crystal microbalances for microscale thermogravimetric analysis. Analytical Chemistry, 82(24), 9977-9982. Masoumi, M., & Jahanshahi, M. (2016). Synthesis and recognition of nano pore molecularly imprinted polymers of thymol on the surface of modified silica nanoparticles. Advances in Polymer Technology, 35(2), 221-227. Masqué, N., Galia, M., Marcé, R. M., & Borrull, F. (1999). Influence of chemical modification of polymeric resin on retention of polar compounds in solid-phase extraction. Chromatographia, 50(1-2), 21. Masque, N., Marce, R. M., & Borrull, F. (2001). Molecularly imprinted polymers: new tailor-made materials for selective solid-phase extraction. Trac Trends in Analytical Chemistry, 20(9), 477-486. Masqué, N., Marcé, R. M., Borrull, F., Cormack, P. A., & Sherrington, D. C. (2000). Synthesis and evaluation of a molecularly imprinted polymer for selective on-line solid-phase extraction of 4-nitrophenol from environmental water. Analytical Chemistry, 72(17), 4122-4126. Mayes, A. G., & Mosbach, K. (1996). Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Analytical Chemistry, 68(21), 3769-3774. Mayes, A. G., & Mosbach, K. (1997). Molecularly imprinted polymers: useful materials for analytical chemistry?. TrAC Trends in Analytical Chemistry, 16(6), 321-332. Mayes, A. G., & Whitcombe, M. J. (2005). Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews, 57(12), 1742-1778. Mayor, M. G., González, G. P., Martínez, R. G., Hernando, P. F., & Alegría, J. D. (2017). Synthesis and characterization of a molecularly imprinted polymer for the determination of spiramycin in sheep milk. Food Chemistry, 221, 721-728. Meroufel, B., Benali, O., Benyahia, M., Benmoussa, Y., & Zenasni, M. A. (2013). Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies. Journal of Material and Environmental Sciences, 4(3), 482-491. Mirzaei, M., Najafabadi, S. A. H., Abdouss, M., Azodi‐Deilami, S., Asadi, E., Hosseini, M. R. M., & Piramoon, M. (2013). Preparation and utilization of microporous molecularly imprinted polymer for sustained release of tetracycline. Journal of Applied Polymer Science, 128(3), 1557-1562. Mizutani, N., Yang, D. H., Selyanchyn, R., Korposh, S., Lee, S. W., & Kunitake, T. (2011). Remarkable enantioselectivity of molecularly imprinted TiO2 nano-thin films. Analytica Chimica Acta, 694(1-2), 142-150. Mohajeri, S. A., Karimi, G., Aghamohammadian, J., & Khansari, M. R. (2011). Clozapine recognition via molecularly imprinted polymers; bulk polymerization versus precipitation method. Journal of Applied Polymer Science, 121(6), 3590-3595. Mohammed, M. A., Shitu, A., & Ibrahim, A. (2014). Removal of methylene blue using low cost adsorbent: a review. Research Journal of Chemical Sciences, 4(1), 91-102. Möller, K., Nilsson, U., & Crescenzi, C. (2001). Synthesis and evaluation of molecularly imprinted polymers for extracting hydrolysis products of organophosphate flame retardants. Journal of Chromatography A, 938(1-2), 121-130. Mosbach, K. (1994). Molecular imprinting. Trends in Biochemical Sciences, 19(1), 9-14. Mosbach, K. (2006). The promise of molecular imprinting. Scientific American, 295(4), 86-91. Naka, Y., Kaetsu, I., Yamamoto, Y., & Hayashi, K. (1991). Preparation of microspheres by radiation‐induced polymerization. I. Mechanism for the formation of monodisperse poly (diethylene glycol dimethacrylate) microspheres. Journal of Polymer Science Part A: Polymer Chemistry, 29(8), 1197-1202. Nemoto, K., Kubo, T., Nomachi, M., Sano, T., Matsumoto, T., Hosoya & Kaya, K. (2007). Simple and effective 3D recognition of domoic acid using a molecularly imprinted polymer. Journal of the American Chemical Society, 129(44), 13626-13632. Nick, K., & Schöler, H. F. (1992). Gas-chromatographic determination of nitrophenols after derivatisation with diazomethane. Fresenius' Journal of Analytical Chemistry, 343(3), 304-307. O'Connor, N. A., Paisner, D. A., Huryn, D and Shea, K. J. (2007). Screening of 5-HT1A receptor antagonists using molecularly imprinted polymers. Journal of the American Chemical Society, 129(6), 1680-1689. Ong, S. T., Lee, C. K., & Zainal, Z. (2007). Removal of basic and reactive dyes using ethylenediamine modified rice hull. Bioresource Technology, 98(15), 2792-2799. Pan, G., Zhang, Y., Guo, X., Li, C., & Zhang, H. (2010). An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosensors and Bioelectronics, 26(3), 976-982. Pan, J., Yao, H., Xu, L., Ou, H., Huo, P., Li, X., & Yan, Y. (2011). Selective recognition of 2, 4, 6-trichlorophenol by molecularly imprinted polymers based on magnetic halloysite nanotubes composites. The Journal of Physical Chemistry C, 115(13), 5440-5449. Pascale, M., De Girolamo, A., Visconti, A., Magan, N., Chianella, I., Piletska, E. V., & Piletsky, S. A. (2008). Use of itaconic acid-based polymers for solid-phase extraction of deoxynivalenol and application to pasta analysis. Analytica Chimica Acta, 609(2), 131-138. Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10, 1445-1451. Pei, Z. G., Shan, X. Q., Liu, T., Xie, Y. N., Wen, B., Zhang, S., & Khan, S. U. (2007). Effect of lead on the sorption of 2, 4, 6-trichlorophenol on soil and peat. Environmental Pollution, 147(3), 764-770. Pei, Z., Li, L., Sun, L., Zhang, S., Shan, X. Q., Yang, S., & Wen, B. (2013). Adsorption characteristics of 1, 2, 4-trichlorobenzene, 2, 4, 6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon, 51, 156-163. Pérez, N., Whitcombe, M. J., & Vulfson, E. N. (2000). Molecularly imprinted nanoparticles prepared by core‐shell emulsion polymerization. Journal of Applied Polymer Science, 77(8), 1851-1859. Pérez, N., Whitcombe, M. J., & Vulfson, E. N. (2001). Surface imprinting of cholesterol on submicrometer core-shell emulsion particles. Macromolecules, 34(4), 830-836. Pérez-Moral, N., & Mayes, A. G. (2004). Comparative study of imprinted polymer particles prepared by different polymerisation methods. Analytica Chimica Acta, 504(1), 15-21. Piletska, E. V., Guerreiro, A. R., Romero-Guerra, M., Chianella, I., Turner, A. P., & Piletsky, S. A. (2008). Design of molecular imprinted polymers compatible with aqueous environment. Analytica Chimica Acta, 607(1), 54-60. Piletska, E. V., Guerreiro, A. R., Whitcombe, M. J., & Piletsky, S. A. (2009). Influence of the polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules, 42(14), 4921-4928. Piletska, E. V., Turner, N. W., Turner, A. P., & Piletsky, S. A. (2005). Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers. Journal of Controlled Release, 108(1), 132-139. Piletsky, S. A., Andersson, H. S., & Nicholls, I. A. (1999). Combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers. Macromolecules, 32(3), 633-636. Piletsky, S. A., Piletska, E. V., Bossi, A., Karim, K., Lowe, P., & Turner, A. P. (2001). Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosensors and Bioelectronics, 16(9-12), 701-707. Piletsky, S. A., Turner, N. W., & Laitenberger, P. (2006). Molecularly imprinted polymers in clinical diagnostics—Future potential and existing problems. Medical Engineering & Physics, 28(10), 971-977. Pocurull, E., Marcé, R. M., & Borrull, F. (1995b). Liquid chromatography of phenolic compounds in natural water using on-line trace enrichment. Chromatographia, 40(1-2), 85-90. Pocurull, E., Sánchez, G., Borrull, F., & Marcé, R. M. (1995a). Automated on-line trace enrichment and determination of phenolic compounds in environmental waters by high-performance liquid chromatography. Journal of Chromatography A, 696(1), 31-39. Podkościelny, P., Dabrowski, A., & Marijuk, O. V. (2003). Heterogeneity of active carbons in adsorption of phenol aqueous solutions. Applied Surface Science, 205(1-4), 297-303. Poma, A., Turner, A. P., & Piletsky, S. A. (2010). Advances in the manufacture of MIP nanoparticles. Trends in Biotechnology, 28(12), 629-637. Puig, D., & Barcelo, D. (1996). Determination of phenolic compounds in water and waste water. TrAC Trends in Analytical Chemistry, 15(8), 362-375. Puoci, F., Cirillo, G., Curcio, M., Iemma, F., Parisi, O. I., Castiglione, M., & Picci, N. (2008). Molecularly imprinted polymers for α-tocopherol delivery. Drug Delivery, 15(4), 253-258. Puoci, F., Iemma, F., Muzzalupo, R., Spizzirri, U. G., Trombino, S., Cassano, R., & Picci, N. (2004). Spherical molecularly imprinted polymers (SMIPs) via a novel precipitation polymerization in the controlled delivery of sulfasalazine. Macromolecular Bioscience, 4(1), 22-26. Qi, P., Wang, J., Jin, J., Su, F., & Chen, J. (2010). 2, 4-Dimethylphenol imprinted polymers as a solid-phase extraction sorbent for class-selective extraction of phenolic compounds from environmental water. Talanta, 81(4-5), 1630-1635. Qi, P., Wang, J., Wang, L., Li, Y., Jin, J., Su, F., Tian, Y., & Chen, J. (2010). Molecularly imprinted polymers synthesized via semi-covalent imprinting with sacrificial spacer for imprinting phenols. Polymer, 51(23), 5417-5423. Qiao, F., & Sun, H. (2010). Simultaneous extraction of enrofloxacin and ciprofloxacin from chicken tissue by molecularly imprinted matrix solid-phase dispersion. Journal of Pharmaceutical and Biomedical Analysis, 53(3), 795-798. Qin, L., He, X. W., Yuan, X., Li, W. Y., & Zhang, Y. K. (2011). Molecularly imprinted beads with double thermosensitive gates for selective recognition of proteins. Analytical and Bioanalytical Chemistry, 399(10), 3375-3385. Rampey, A. M., Umpleby, R. J., Rushton, G. T., Iseman, J. C., Shah, R. N., & Shimizu, K. D. (2004). Characterization of the imprint effect and the influence of imprinting conditions on affinity, capacity, and heterogeneity in molecularly imprinted polymers using the Freundlich isotherm-affinity distribution analysis. Analytical Chemistry, 76(4), 1123-1133. Rebelo, T. S., Almeida, S. A., Guerreiro, J. R. L., Montenegro, M. C. B., & Sales, M. G. F. (2011). Trimethoprim-selective electrodes with molecularly imprinted polymers acting as ionophores and potentiometric transduction on graphite solid-contact. Microchemical Journal, 98(1), 21-28. Roland, R. M., & Bhawani, S. A. (2016). Synthesis and characterization of molecular imprinting polymer microspheres of piperine: extraction of piperine from spiked urine. Journal of Analytical Methods in Chemistry, 2016, 1-6. Ruana, J., Urbe, I., & Borrull, F. (1993). Determination of phenols at the mg/l level in drinking and river waters by liquid chromatography with UV and electrochemical detection. Journal of Chromatography A, 655(2), 217-226. Ruela, A. L. M., Figueiredo, E. C., & Pereira, G. R. (2014). Molecularly imprinted polymers as nicotine transdermal delivery systems. Chemical Engineering Journal, 248, 1-8. Rushton, G. T., Karns, C. L., & Shimizu, K. D. (2005). A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs). Analytica Chimica Acta, 528(1), 107-113. Shafqat, S. S., Nosheen, M., Khan, A. A. & Shafqat, S. R. (2018). Removal of Congo red dye from aqueous solution using branches of Ficus religiosa. Malaysian Applied Biology, 47(1), 103-108. Schmidt, R. H., & Haupt, K. (2005). Molecularly imprinted polymer films with binding properties enhanced by the reaction-induced phase separation of a sacrificial polymeric porogen. Chemistry of Materials, 17(5), 1007-1016. Sellergren, B. (1994). Direct drug determination by selective sample enrichment on an imprinted polymer. Analytical Chemistry, 66(9), 1578-1582. Sellergren, B. (2001). Molecularly Imprinted Polymers. Man-Made Mimics of Antibodies and their Application. Analytical Chemistry, 23, 126-138. Sellergren, B., & Hall, A. J. (2001). Fundamental aspects on the synthesis and characterisation of imprinted network polymers. Techniques and Instrumentation in Analytical Chemistry, 23, 21-57. Senthilkumaar, S., P.R. Varadarajan, K. Porkodi and C.V. Subbhuraam, 2005. Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. Journal of Collide International Science, 284, 78-82. Severin, K. (2002). Buchbesprechung: Molecularly Imprinted Polymers. Man‐Made Mimics of Antibodies and their Applications in Analytical Chemistry. Angewandte Chemie, 114(6), 1116-1116. Shanmugapriya, A., Ramya, R., Ramasubramaniam, S., & Sudha, P. N. (2011). Studies on removal of Cr (VI) and Cu (II) ions using chitosan grafted-polyacrylonitrile. Archives of Applied Science Research, 3(3), 424-435. Shea, K. J., & Thompson, E. (1978). Template synthesis of macromolecules. Selective functionalization of an organic polymer. The Journal of Organic Chemistry, 43(21), 4253-4255. Shen, X., & Ye, L. (2011). Molecular imprinting in Pickering emulsions: a new insight into molecular recognition in water. Chemical Communications, 47(37), 10359-10361. Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. Singh, B., & Chauhan, N. (2008). Preliminary evaluation of molecular imprinting of 5-fluorouracil within hydrogels for use as drug delivery systems. Acta Biomaterialia, 4(5), 1244-1254. Southard, G. E., Van Houten, K. A., & Murray, G. M. (2007). Soluble and processable phosphonate sensing star molecularly imprinted polymers. Macromolecules, 40(5), 1395-1400. Spivak, D. A. (2005). Optimization, evaluation, and characterization of molecularly imprinted polymers. Advanced Drug Delivery Reviews, 57(12), 1779-1794. Sreenivasan, K. (2001). The effect of polymerisation methods on the adsorption capacity of HEMA based molecularly imprinted polymers. Journal of Polymer Research, 8(3), 197-200. Srinivas, K., King, J. W., Howard, L. R., & Monrad, J. K. (2010). Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. Journal of Food Engineering, 100(2), 208-218. Stavropoulos, G. G., & Zabaniotou, A. A. (2005). Production and characterization of activated carbons from olive-seed waste residue. Microporous and Mesoporous Materials, 82(1-2), 79-85. Subrahmanyam, S., & Piletsky, S. A. (2009). Computational design of molecularly imprinted polymers. In Combinatorial Methods for Chemical and Biological Sensors, 135-172. Suedee, R., Seechamnanturakit, V., Canyuk, B., Ovatlarnporn, C., & Martin, G. P. (2006). Temperature sensitive dopamine-imprinted (N, N-methylene-bis-acrylamide cross-linked) polymer and its potential application to the selective extraction of adrenergic drugs from urine. Journal of Chromatography A, 1114(2), 239-249. Svenson, J., & Nicholls, I. A. (2001). On the thermal and chemical stability of molecularly imprinted polymers. Analytica Chimica Acta, 435(1), 19-24. Syu, M. J., Chiu, T. C., Lai, C. Y., & Chang, Y. S. (2006). Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly (MAA-co-EGDMA) film. Biosensors and Bioelectronics, 22(4), 550-557. Tadi, K. K., & Motghare, R. V. (2013). Potentiometric selective recognition of oxalic acid based on molecularly imprinted polymer. International Journal of Electrochemical Science, 8, 3197-3211. Takeuchi, T., & Haginaka, J. (1999). Separation and sensing based on molecular recognition using molecularly imprinted polymers. Journal of Chromatography B: Biomedical Sciences and Applications, 728(1), 1-20. Tamayo, F. G., Turiel, E., & Martín-Esteban, A. (2007). Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. Journal of Chromatography A, 1152(1-2), 32-40. Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 164(2-3), 473-482. Tavengwa, N. T., Cukrowska, E., & Chimuka, L. (2014). Preparation, characterization and application of NaHCO3 leached bulk U (VI) imprinted polymers endowed with γ-MPS coated magnetite in contaminated water. Journal of Hazardous Materials, 267, 221-228. Thompson, G., Swain, J., Kay, M., & Forster, C. F. (2001). The treatment of pulp and paper mill effluent: a review. Bioresource Technology, 77(3), 275-286. Tominaga, Y., Kubo, T., Kaya, K., & Hosoya, K. (2009). Effective recognition on the surface of a polymer prepared by molecular imprinting using ionic complex. Macromolecules, 42(8), 2911-2915. Tor, A., Cengeloglu, Y., & Ersoz, M. (2009). Increasing the phenol adsorption capacity of neutralized red mud by application of acid activation procedure. Desalination, 242(1-3), 19-28. Tseng, R. L., Tseng, S. K., & Wu, F. C. (2006). Preparation of high surface area carbons from Corncob with KOH etching plus CO2 gasification for the adsorption of dyes and phenols from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279(1-3), 69-78. Tsuru, N., Kikuchi, M., Kawaguchi, H., & Shiratori, S. (2006). A quartz crystal microbalance sensor coated with MIP for “Bisphenol A” and its properties. Thin Solid Films, 499(1-2), 380-385. Turiel, E., Martín-Esteban, A., & Tadeo, J. L. (2007). Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils. Journal of Chromatography A, 1172(2), 97-104. Turner, C., Turner, P., Jacobson, G., Almgren, K., Waldebäck, M., Sjöberg, P., Karlsson, E., N., & Markides, K. E. (2006). Subcritical water extraction and β-glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. Green Chemistry, 8(11), 949-959. Umpleby II, R. J., Baxter, S. C., Bode, M., Berch Jr, J. K., Shah, R. N., & Shimizu, K. D. (2001). Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers. Analytica Chimica Acta, 435(1), 35-42. Umpleby II, R. J., Baxter, S. C., Rampey, A. M., Rushton, G. T., Chen, Y., & Shimizu, K. D. (2004). Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. Journal of Chromatography B, 804(1), 141-149. Umpleby II, R. J., Bode, M., & Shimizu, K. D. (2000). Measurement of the continuous distribution of binding sites in molecularly imprinted polymersElectronic Supplementary Information available. Analyst, 125(7), 1261-1265. Umpleby, R. J., Baxter, S. C., Chen, Y., Shah, R. N., & Shimizu, K. D. (2001). Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm. Analytical Chemistry, 73(19), 4584-4591. Urraca, J. L., Aureliano, C. S., Schillinger, E., Esselmann, H., Wiltfang, J., & Sellergren, B. (2011). Polymeric complements to the Alzheimer's disease biomarker β-amyloid isoforms Aβ1–40 and Aβ1–42 for blood serum analysis under denaturing conditions. Journal of the American Chemical Society, 133(24), 9220-9223. Walker, N. R., Linman, M. J., Timmers, M. M., Dean, S. L., Burkett, C. M., Lloyd, J. A., & Edmiston, P. L. (2007). Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol–gel sensing films. Analytica Chimica Acta, 593(1), 82-91. Wang, J., Cormack, P. A., Sherrington, D. C., & Khoshdel, E. (2003). Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angewandte Chemie International Edition, 42(43), 5336-5338. Wang, X., Pan, J., Guan, W., Dai, J., Zou, X., Yan, Y., Li, C., & Hu, W. (2011). Selective removal of 3-chlorophenol from aqueous solution using surface molecularly imprinted microspheres. Journal of Chemical & Engineering Data, 56(6), 2793-2801. Wang, X., Wang, L., He, X., Zhang, Y., & Chen, L. (2009). A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta, 78(2), 327-332. Wang, X., Wang, L., He, X., Zhang, Y., & Chen, L. (2009). A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta, 78(2), 327-332. Wei, S., Jakusch, M., & Mizaikoff, B. (2006). Capturing molecules with templated materials—Analysis and rational design of molecularly imprinted polymers. Analytica Chimica Acta, 578(1), 50-58. Wei, S., Molinelli, A., & Mizaikoff, B. (2006). Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol. Biosensors and Bioelectronics, 21(10), 1943-1951. Weng, Z., Muratsugu, S., Ishiguro, N., Ohkoshi, S. I., & Tada, M. (2011). Preparation of surface molecularly imprinted Ru-complex catalysts for asymmetric transfer hydrogenation in water media. Dalton Transactions, 40(10), 2338-2347. Whitcombe, M. J., Kirsch, N., & Nicholls, I. A. (2014). Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. Journal of Molecular Recognition, 27(6), 297-401. Wightwick, A., Walters, R., Allinson, G., Reichman, S., & Menzies, N. (2010). Environmental risks of fungicides used in horticultural production systems. Fungicides, 273-304. Wissiack, R., Rosenberg, E., & Grasserbauer, M. (2000). Comparison of different sorbent materials for on-line solid-phase extraction with liquid chromatography–atmospheric pressure chemical ionization mass spectrometry of phenols. Journal of Chromatography A, 896(1-2), 159-170. Wulff, G. (1972). The use of polymers with enzyme-analogous structures for the resolution of racemates. Angewandte Chemie International Edition in English, 11(4), 341. Wulff, G. (1995). Molecular imprinting in cross‐linked materials with the aid of molecular templates—a way towards artificial antibodies. Angewandte Chemie International Edition in English, 34(17), 1812-1832. Wulff, G. (1995). Template Induced Control of Stereochemistry for the Synthesis of PolymPolymers. Supramolecular Stereochemistry, 473, 13-19. Wulff, G. (2001). Molecular imprinting with covalent or stoichiometric noncovalent interactions. Molecularly imprinted polymers: man-made mimics of antibodies and their applications in analytical chemistry, 71-111. Wulff, G. (2002). Enzyme-like catalysis by molecularly imprinted polymers. Chemical Reviews, 102(1), 1-28. Wulff, G. (2013). Fourty years of molecular imprinting in synthetic polymers: origin, features and perspectives. Microchimica Acta, 180(15-16), 1359-1370. Xu, L., Pan, J., Dai, J., Li, X., Hang, H., Cao, Z., & Yan, Y. (2012). Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution. Journal of Hazardous Materials, 233, 48-56. Xu, X., Zhu, L., & Chen, L. (2004). Separation and screening of compounds of biological origin using molecularly imprinted polymers. Journal of Chromatography B, 804(1), 61-69. Yan, H., Qiao, F., & Row, K. H. (2007). Molecularly imprinted-matrix solid-phase dispersion for selective extraction of five fluoroquinolones in eggs and tissue. Analytical Chemistry, 79(21), 8242-8248. Yan, H., Row, K. H., & Yang, G. (2008). Water-compatible molecularly imprinted polymers for selective extraction of ciprofloxacin from human urine. Talanta, 75(1), 227-232. Yano, K. and Karube,I.(1999). Molecularly imprinted polymers for biosensor applications. Trac-Trends in Analytical Chemistry. 18(3), 199-204 Ye, L., & Haupt, K. (2004). Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Analytical and Bioanalytical Chemistry, 378(8), 1887-1897. Ye, L., & Mosbach, K. (2008). Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chemistry of Materials, 20(3), 859-868. Ye, L., Cormack, P. A., & Mosbach, K. (1999). Molecularly imprinted monodisperse microspheres for competitive radioassay. Analytical Communications, 36(2), 35-38. Ye, L., Weiss, R., & Mosbach, K. (2000). Synthesis and characterization of molecularly imprinted microspheres. Macromolecules, 33(22), 8239-8245. Ying, X., Cheng, G., & Li, X. (2011). The imprinting induce‐fit model of specific rebinding of macromolecularly imprinted polymer microspheres. Journal of Applied Polymer Science, 122(3), 1847-1856. Yoshimatsu, K., Reimhult, K., Krozer, A., Mosbach, K., Sode, K., & Ye, L. (2007). Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Analytica Chimica Acta, 584(1), 112-121. Yu, K. Y., Tsukagoshi, K., Maeda, M., & Takagi, M. (1992). Metal ion-imprinted microspheres prepared by reorganization of the coordinating groups on the surface. Analytical Sciences, 8(5), 701-703. Yusof, N. A., Beyan, A., Haron, J., & Ibrahim, N. A. (2010). Synthesis and characterization of a molecularly imprinted polymer for Pb2+ uptake using 2-vinylpyridine as the complexing monomer. Sains Malaysiana, 39(5), 829-835. Zaghouane-Boudiaf, H., & Boutahala, M. (2011). Adsorption of 2, 4, 5-trichlorophenol by organo-montmorillonites from aqueous solutions: Kinetics and equilibrium studies. Chemical Engineering Journal, 170(1), 120-126. Zeng, Q., Peng, S., Liu, M., Song, Z., Wang, X., Zhang, X., & Hong, S. (2013). Solubilization and adsorption behaviors of 2, 4, 6-trichlorophenol in the presence of surfactants. Chemical Engineering Journal, 230, 202-209. Zhang, Y., Xie, Z., Teng, X., & Fan, J. (2016). Synthesis of molecularly imprinted polymer nanoparticles for the fast and highly selective adsorption of sunset yellow. Journal of Separation Science, 39(8), 1559-1566. Zhang, Z., Wang, B., & Li, J. (2011). Effect of the synthesis initiation mode on the structure and properties of sulfadiazine molecularly imprinted polymers. Journal of Applied Polymer Science, 119(6), 3189-3198. Zhang, Z., Yang, X., Zhang, H., Zhang, M., Luo, L., Hu, Y., & Yao, S. (2011). Novel molecularly imprinted polymers based on multi-walled carbon nanotubes with binary functional monomer for the solid-phase extraction of erythromycin from chicken muscle. Journal of Chromatography B, 879(19), 1617-1624. Zhao, W. F., Fang, B. H., Li, N., Nie, S. Q., Wei, Q., & Zhao, C. S. (2009). Fabrication of pH‐responsive molecularly imprinted polyethersulfone particles for bisphenol‐A uptake. Journal of Applied Polymer Science, 113(2), 916-921. Zhou, Q., Frost, R. L., He, H., Xi, Y., & Liu, H. (2007). Adsorbed para-nitrophenol on HDTMAB organoclay—A TEM and infrared spectroscopic study. Journal of Colloid and Interface Science, 307(2), 357-363. Zimmerman, S. C., & Lemcoff, N. G. (2004). Synthetic hosts via molecular imprinting are universal synthetic antibodies realistically possible?. Chemical Communications, 1, 5-14. Zuman, P., & Ludvík, J. (2000). The use of controlled potential electrolysis with a dropping mercury electrode in elucidation of organic electroreduction mechanisms. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 12(12), 879-888.