Artificial neural networks for rainfall runoff modelling with special reference to Sg. Bedup catchment area

Artificial Neural Network (ANN) is an information-processing system composed of many nonlinear and densely interconnected processing elements or neurons. ANN is able to extract the relation between the inputs and outputs of a process, without the physics being explicitly provided to them. The natura...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Kuok, King Kuok
التنسيق: أطروحة
اللغة:English
منشور في: 2004
الموضوعات:
الوصول للمادة أونلاين:http://ir.unimas.my/id/eprint/3137/1/Kuok.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Artificial Neural Network (ANN) is an information-processing system composed of many nonlinear and densely interconnected processing elements or neurons. ANN is able to extract the relation between the inputs and outputs of a process, without the physics being explicitly provided to them. The natural behavior of hydrological processes is appropriate for the application ANN in hydrology. A rainfall runoff model for Sungai Bedup Basin in Sarawak was built using three different ANN architectures namely Multilayer perceptron (MLP), Recurrent (REC) and Radial Basic function (RBF).