Expression Analysis of uS19 and its Association with Nasopharyngeal Carcinoma

Nasopharyngeal carcinoma (NPC) is currently the fourth most common cancer in Malaysia. Ribosomal protein genes are crucial in producing functional ribosomes that assist in cell functions and have shown to be associated in pathways that link to the formation of cancer. Previous studies have shown tha...

Full description

Saved in:
Bibliographic Details
Main Author: Chee, Cassandra Sheau Mei
Format: Thesis
Language:English
English
Published: 2020
Subjects:
Online Access:http://ir.unimas.my/id/eprint/31512/1/Mei%2824%29.pdf
http://ir.unimas.my/id/eprint/31512/4/Cassandra%20Chee%20Sheau%20Mei%20ft.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-unimas-ir.31512
record_format uketd_dc
institution Universiti Malaysia Sarawak
collection UNIMAS Institutional Repository
language English
English
topic Q Science (General)
QR180 Immunology
spellingShingle Q Science (General)
QR180 Immunology
Chee, Cassandra Sheau Mei
Expression Analysis of uS19 and its Association with Nasopharyngeal Carcinoma
description Nasopharyngeal carcinoma (NPC) is currently the fourth most common cancer in Malaysia. Ribosomal protein genes are crucial in producing functional ribosomes that assist in cell functions and have shown to be associated in pathways that link to the formation of cancer. Previous studies have shown that uS19 gene is involved in the Mdm2-p53-MdmX pathway, where it inhibits the p53, a tumor suppressor. Furthermore, expression of ribosomal proteins have been studied to observe its expression levels, in which potential biomarkers could be discovered that assist in the early diagnosis of cancers. Notably, uS19 is currently understudied, though studies have been done on the expression of uS19 gene in NPC, where it was found to be upregulated in poorly differentiated NPC tissue samples and HK1 cell line. However, further validation is required. Studies on the post-translational effect of uS19 in NPC carcinogenesis are yet to be done. In this study, mRNA and protein expression of uS19 data obtained revealed a differential expression at both gene and protein levels in NPC cell lines compared to normal nasopharyngeal epithelial (NPE) cells. The gene expression of uS19 was found to be down-regulated following a trend of cell type and differentiation, while protein expression of uS19 was found to be upregulated in all NPC cell lines, with C666-1 cell line being the highest. The data attained showed that uS19 might be involved in the NPC tumorigenesis based on the difference in transcription and translational level. Protein-protein interaction via in silico approach revealed uS19 could possibly bind with 10 proteins, which includes LMP2 and EBNA1, a known Epstein-Barr virus (EBV) protein. Our findings strengthen the potential role of uS19 in NPC tumorigenesis based on the expression data obtained and calculated interactions through bioinformatics analysis that revealed a high possible chance of uS19 protein interacting with EBV proteins involved in the carcinogenesis of NPC.
format Thesis
qualification_level Master's degree
author Chee, Cassandra Sheau Mei
author_facet Chee, Cassandra Sheau Mei
author_sort Chee, Cassandra Sheau Mei
title Expression Analysis of uS19 and its Association with Nasopharyngeal Carcinoma
title_short Expression Analysis of uS19 and its Association with Nasopharyngeal Carcinoma
title_full Expression Analysis of uS19 and its Association with Nasopharyngeal Carcinoma
title_fullStr Expression Analysis of uS19 and its Association with Nasopharyngeal Carcinoma
title_full_unstemmed Expression Analysis of uS19 and its Association with Nasopharyngeal Carcinoma
title_sort expression analysis of us19 and its association with nasopharyngeal carcinoma
granting_institution Universiti Malaysia Sarawak (UNIMAS)
granting_department Faculty of Resource Science and Technology
publishDate 2020
url http://ir.unimas.my/id/eprint/31512/1/Mei%2824%29.pdf
http://ir.unimas.my/id/eprint/31512/4/Cassandra%20Chee%20Sheau%20Mei%20ft.pdf
_version_ 1783728404761149440
spelling my-unimas-ir.315122023-04-18T02:56:37Z Expression Analysis of uS19 and its Association with Nasopharyngeal Carcinoma 2020-09-01 Chee, Cassandra Sheau Mei Q Science (General) QR180 Immunology Nasopharyngeal carcinoma (NPC) is currently the fourth most common cancer in Malaysia. Ribosomal protein genes are crucial in producing functional ribosomes that assist in cell functions and have shown to be associated in pathways that link to the formation of cancer. Previous studies have shown that uS19 gene is involved in the Mdm2-p53-MdmX pathway, where it inhibits the p53, a tumor suppressor. Furthermore, expression of ribosomal proteins have been studied to observe its expression levels, in which potential biomarkers could be discovered that assist in the early diagnosis of cancers. Notably, uS19 is currently understudied, though studies have been done on the expression of uS19 gene in NPC, where it was found to be upregulated in poorly differentiated NPC tissue samples and HK1 cell line. However, further validation is required. Studies on the post-translational effect of uS19 in NPC carcinogenesis are yet to be done. In this study, mRNA and protein expression of uS19 data obtained revealed a differential expression at both gene and protein levels in NPC cell lines compared to normal nasopharyngeal epithelial (NPE) cells. The gene expression of uS19 was found to be down-regulated following a trend of cell type and differentiation, while protein expression of uS19 was found to be upregulated in all NPC cell lines, with C666-1 cell line being the highest. The data attained showed that uS19 might be involved in the NPC tumorigenesis based on the difference in transcription and translational level. Protein-protein interaction via in silico approach revealed uS19 could possibly bind with 10 proteins, which includes LMP2 and EBNA1, a known Epstein-Barr virus (EBV) protein. Our findings strengthen the potential role of uS19 in NPC tumorigenesis based on the expression data obtained and calculated interactions through bioinformatics analysis that revealed a high possible chance of uS19 protein interacting with EBV proteins involved in the carcinogenesis of NPC. Universiti Malaysia Sarawak (UNIMAS) 2020-09 Thesis http://ir.unimas.my/id/eprint/31512/ http://ir.unimas.my/id/eprint/31512/1/Mei%2824%29.pdf text en public http://ir.unimas.my/id/eprint/31512/4/Cassandra%20Chee%20Sheau%20Mei%20ft.pdf text en validuser masters Universiti Malaysia Sarawak (UNIMAS) Faculty of Resource Science and Technology Arendt, J. F. B., Pederson, L., Nexo, E., Sorensen, H. T. (2013). Elevated plasma vitamin B12 level as a marker for cancer: A population-based cohort. Journal National Cancer Institute, 105(23), 1799-1805. Arthurs, C., Murtaza, B. N., Thomson, C., Dickens, K., Henrique, R., Patel, H. R. H., Beltran, M., Millar, M., Thrasivoulou, C., & Ahmed, A. (2017). Expression of ribosomal proteins in normal and cancerous human prostate tissue. PLOS One, 12(10), e0186047. https://doi.org/10.1371/journal.pone.0186047. Aziz, A., Ramli, R. R., Mohamad, I., & Bhavaraju, V. M. K. (2017). Young nice happy nasopharyngeal carcinoma: a review of an 8-year experience in the East Coast Malaysia Hospital. The Egyptian Journal of Otolaryngology, 33(2), 490-494. Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A comprehensive hscoring function for model quality assessment. Proteins: Structure, Function and Bioinformtics, 71(1), 261-277. Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Structural Bioinformatics, 27(3), 343-350. Benton, D. (1996). Bioinformatics – principles and potential of a new multidisciplinary tool. Introductory Overview, 14(8), 261-272. Bienert, S., Waterhouse, A., de Beer, T. A. P., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL Repository- new features and functionality. Nucleic Acids Research, 45, D313-D319. Braunschweig, U., Barbosa-Morais, N. L., Pan, Q., Nachman, E. N., Alipanahi, B., Gonatopoulos-Pournatzis, T., Frey, B., Irimia, M., & Blencowe, B. J. (2014). Widespread intron retention in mammals functionally tunes transcriptomes. Genome Research, 24(11), 1774-1786. Broccolo, F., Ciccarese, G., Rossi, A., Anselmi, L., Drago, F., & Toniolo, A. (2018). Human papillomavirus (HPV) and Epstein-Barr virus (EBV) in keratinizing versus non-keratinizing squamous cell carcinoma of oropharynx. Infectious Agents and Cancer, 13(32). https://doi.org/10.1186/s13027-018-0205-6. Caldwell, R. G., Wilson, J. B., Anderson, S. J., & Longnecker, R. (1998). Epstein-Barr Virus LMP2A Drives B Cell Development and Survival in the Absence of Normal B Cell Receptor Signals. Immunity, 9(3), 405-411. Carugo, O., & Djinovic-Carugo, K. (2013). A proteomic Ramachandran plot (PR plot). Amino Acids, 44(2), 781-790. Cha, J. D., Kim, H. J., & Cha, I. H. (2011). Genetic alterations in oral squamous cell carcinoma progression detected by combining array-based comparative genomic hybridization and multiplex ligation-dependent probe amplification. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, 111(5), 594 – 607. Chang, E. T., & Adami, H. O. (2006). The Enigmatic Epidemiology of Nasopharyngeal Carcinoma. Cancer Epidemiol Biomarkers, 15(10), 1765-1777. Chen, G., Shen, C., Wang, X., Wang, H., Liu, Y., Yu, C., Iv, J., He, J., & Wen, Z. (2017). Identification of genes and pathways in nasopharyngeal carcinoma by bioinformatics analysis. Oncotarget, 8(38), 63738-63749. Cheung, S. T., Huang, D. P., Hui, A. B., Lo, K. W., Tsang, Y. S., Wong, N., Whitney, B. M., & Lee, J. C. (1999). Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. International Journal of Cancer, 83(1), 121-126. Closs, E. I., Boissel, J. P., Habermeier, A., & Rotmann, A. (2006). Structure and function of cationic amino acid transporters (CATs). Journal of Membrane Biology, 213(2), 67-77. Daftuar, L., Yan, Z., Jacq, X., & Prives, C. (2013). Ribosomal proteins RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network. PLOS One, 8(7), e68667. https://doi.org/10.1371/journal.pone.0068667. Debi, B. C. R., Pisani, P., Tang, T. S., & Parking, D. M. (2004). High Incidence of Nasopharyngeal Carcinoma in Native People of Sarawak, Borneo Island. Cancer Epidemiology, Biomarkers and Prevention, 13(3), 482-486. Devereux, T. R., Risinger, J. I., & Barrett, J. C. (1998). Mutations and altered expression of the human cancer genes: what they tell us about causes. IARC Scientific Publications, (146), 19-42. Dong, J. Q., Li, M. Z., Liu, Z. G., Zhong, Q., Xiong, D., Xu, L. H., Du, Y., Xia, Y. F., & Zeng, M. S. (2012). Establishment and characterization of a novel nasopharyngeal carcinoma cell line (SUNE2) from a Cantonese patient. Chinese Journal of Cancer, 31(1), 36-44. Dvinge, H., & Bradley, R. K. (2015). Widespread intron retention diversifies most cancer transcriptomes. Genome Medicine, 7(45). doi 10.1186/s13073-015-0168-9. Elia, A., Vyas, J., Laing, K. G., & Clemens, M. J. (2004). Ribosomal protein L22 inhibits regulation of cellular activities by the Epstein-Barr virus small RNA EBER-1. European Journal of Biochemistry, 271(10), 1895-1905. Ekizoglu, S., Seven, D., Ulutin, T., Guliyev, J., & Buyru, N. (2018). Investigation of the SLC22A23 gene in laryngeal squamous cell carcinoma. BMC Cancer, 18(477).a https://doi.org/10.1186/s12885-018-4381-y. Eswaran, J., Horvath, A., Godbole, S., Reddy, S. D., Mudvari, P., Ohshiro, K., Cyanam, D., Nair, S., Fuqua, S. A. W., Polyak, K., Florea, L. D., & Kumar, R. (2013). RNA sequencing of cancer reveals novel splicing alterations. Scientific Reports, 3(1689). doi: 10.1038/srep01689. Fang, W., Li, X., Jiang, Q., Liu, Z., Yang, H., Wang, S., Xie, S., Liu, Q., Liu, T., Huang, J., Xie, W., Li, Z., Zhao, Y., Wang, E., Marincola, F. M., & Yao, K. (2008). Transcriptional patterns, biomarkers and pathways characterizing nasopharyngeal carcinoma of Southern China. Journal of Translational Medicine, 6(32). https://doi.org/10.1186/1479-5876-6-32. Feng, X., Shi, H., Chao, X., Zhao, F., Song, L., Wei, M., & Zhang, H. (2019). Deciphering the pharmacological mechanism of the herb Radix Ophiopogonis in the treatment of nasopharyngeal carcinoma by integrating iTRAQ-coupled 2-D LC-MS/MS analysis and network investigation. Frontiers in Pharmacology, 10(253). doi: 10.3389/fphar.2019.00253. Forsman, A., Ruetschi, U., Ekholm, J., & Rymo, L. (2008). Identification of Intracellular Proteins Associated with the EBV-Encoded Nuclear Antigen 5 Using an Efficient TAP Procedure and FT-ICR Mass Spectrometry. Journal of Proteome Research, 7(6), 2309-2319. Frappier, L. (2012). Role of EBNA1 in NPC tunourigenesis. Seminars in Cancer Biology, 22(2), 154-161. Fung, L. F., Lo, A. K. F., Yuen, P. W., Liu, Y., Wang, X. H., & Tsao, S. W. (2000). Differential gene expression in nasopharyngeal carcinoma cells. Life Sciences, 67(8), 923-936. Gibrat, J. F., Madej, T., & Bryant, S. H. (1996). Surprising similarities in structure comparison. Current Opinion in Structural Biology, 6(3), 377-385. Glaser, R., Zhang, H. Y., Yao, K. T., Wang, F. X., Li, G. Y., Wen, D. S., & Li, Y. P. (1989). Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas. Proceedings of National Academy of Sciences of the United States of America, 86(23), 9524-9528. Gullo, C., Low, W. K., & Teoh, G. (2008). Association of Epstein-Barr Virus with Nasopharyngeal Carcinoma and Current Status of Development of Cancer-derived Cell Lines. Annals Academy of Medicine Singapore, 37(9), 769-777. Hildesheim, A., West, S., DeVeyra, E., De Guzman, M. F., Jurado, A., Jones, C., Imai, J., & Hinuma, Y. (1992). Herbal Medicine Use, Epstein-Barr Virus, and Risk of Nasopharyngeal Carcinoma. Cancer Research, 52(11), 3048-3051. Hildesheim, A., Dosemeci, M., Chan, C. C., Chen, C. J., Mittl, B. F., Sun, B., Levine, R. H., Chen, J. Y., Brinton, L. A., & Yang, C. Z. (2001). Occupational Exposure to Wood, Formaldehyde, and Solvents and Risk of Nasopharyngeal Carcinoma. Cancer Epidemiology, Biomarkers and Prevention, 10(11), 1145-1153. Hildesheim, A., & Wang, C. P. (2012). Genetic Predisposition Factors and Nasopharyngeal Carcinoma Risk: A Review of Epidemiological Association Studies, 2000– 2011. Seminar Cancer Biology, 22(2), 107-116. Ho, B. K., Thomas, A., & Brasseur, R. (2003). Revisiting the Ramachandran plot: Hard- sphere repulsion, electrostatics, and H-bonding in the ⍺-helix. Protein Science, 12(11), 2508-2522. Hsu, W. L., Yu, K. J., Chien, Y.C., Chiang, C. J., Cheng, Y. J., Chen, J. Y., Liu, M. Y., Chou, S. P., You, S. L., Hsu, M. M., Lou, P. J., Wang, C. P., Hong, J. H., Leu, Y. S., Tsai, M. H., Su, M. C., Tsai, S. T., Chao, W. Y., Ger, L. P., Chen, P. R., Yang, C. S., Hildesheim, A., Diehl, S. R., & Chen, C. J. (2010). Familial tendency and risk of nasopharyngeal carcinoma in Taiwan: Effects of covariated on risk. American Journal of Epidemiology, 173(3), 292-299. Huang, D. P., Ho, J. H., Saw, D., & Teoh, T. B. (1978). Carcinoma of the nasal and paranasal regions in rats fed Cantonese salted marine fish. IARC Scientific Publications, (20), 315-328. Huang, D. P., Ho, J. H. C., Poon, Y. F., Chew, E. C., Saw, D., Lui, M., Li, C. L., Mak, L. S., Lai, S. H., & Lau, W. H. (1980). Establishment of cell line (NPC/HK1) from a differentiated squamous carcinoma of the nasopharynx. International Journal of Cancer, 26(2), 127-132. Huang, L., Szymanska, K., Jensen, V. L., Janecke, A. R., Innes A. M., Divis, E. E., Frosk, P., Li, C., Willer, J. R., Chodirker, B. N., Greenberg, C. R., McLeod, D. R., Bernier F. P., Chudley, A. E., Muller, T., Shboul, M., Logan, C. V., Loucks, C. M., Beaulieu, C. L., Bowie, R. V., Bell, S. M., Adkins, J., Zuniga, F. I., Ross, K. D., Wang, J., Ban, M. R., Becker, C., Numberg, P., Douglas, S., Craft, C. M., Akimenko, M. A., Hegele, R. A., Ober, C., Utermann, G., Bolz, H. J., Bulman, D. E., Katsanis, N., Blacque, O. E., Doherty, D., Parboosingh, J. S., Leroux, M. R., Johnson, C. A., & Boycott, K. M. (2011). TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. American Journal of Human Genetics, 89(6), 713-730. Ishii, K., Washio, T., Uechi, T., Yoshihama, M., Kenmochi, N., & Tomita, M. (2006). Characteristics and clustering of human ribosomal protein genes. BMC Genomics, 7(37). Published 2006 Feb 28. doi:10.1186/1471-2164-7-37. Kang, M. S., & Kieff, E. (2015). Epstein-Barr virus latent genes. Experimental & Molecular Medicine, 47(131), e131; doi:10.1038/emm.2014.84. Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U., Jandrasits, C., Jimenez, R. C., Khadake, J., Mahadevan, U., Patrick, M., Perduzzi, I., Pfeiffenberger, E., Porras, P., Raghunath, A., Roechert, B., Orchard, S., & Hermjakob, H. (2012). The IntAct molecular interaction database in 2012. Nucleic Acids Research, 40, D841-D846. Kitagawa, M., Takasawa, S., Kikuchi, N., Takako, I., Teraoka, H., Yamamoto, H., & Okamoto, H. (1991). Rig encodes ribosomal protein S15 The primary structure of mammalian ribosomal protein S15. FEBS Letters, 283(2), 210-214. Kolenda, T., Guglas, K., Rys, M., Bogaczynska, M., Teresiak, A., Blizniak, R., Lasinska, I., Mackiewicz, J. & Kamperska, K. M. (2017). Biological role of long non-coding RNA in head and neck cancers. Reports of Practical Oncology and Radiotherapy, 22(5), 378-388. Kondoh, N., Schweinfest, C. W., Henderson, K. W., & Papas, T. S. (1992). Differential expression of S19 ribosomal protein, laminin-binding protein, and human lymphocyte antigen class I messenger RNAs associated with colon carcinoma progression and differentiation. Cancer Research, 52(4), 791-796. Kothapalli, R., Yoder, S.J., Mane, S., & Loughran, T.P. (2002). Microarray results: how accurate are they? BMC Bioinformatics, 3(22). http://www.biomedcentral.com/1471-2015/3/22. Kozakov, D., Hall, D. R., Xia, B., Porter, K, A., Padhorny, D., Yueh , C., Beglov, D., & Vadja, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255-278. Lahuri, Y. S., Mohamad, I., & Hashim, H. (2015). Nasopharyngeal carcinoma with metastases to colon. Egyption Journal of Ear, Nose, Throat and Allied Sciences, 16(2), 201-204. Landau, D. A., Tausch, E., Taylor-Weiner, A. N., Stewart, C., Reiter, J. G., Bahlo, J., Kluth, S., Bozic, I., Lawrence, M., Bottcher, S., Carter, S. L., Cibulskis, K., Mertens, D., Sougnez, C. L., Rosenberg, M., Hess, J. M., Edelmann, J., Kless, S., Kneba, M., Ritgen, M., Fink, A., Fischer, K., Gabriel, S., Lander, E. S., Nowak, M. A., Dohner, H., Hallek, M., Neuberg, D., Getz, G., Stilgenbauer, S., & Wu, C. J. (2015). Mutations driving CLL and their evolution in progression and relapse. Nature, 526, 525-530. Lawdowski, M., O’Donohue, M. F., Buros, C., Ghazvinian, R., Montel-Lehry, N., Vlachos, A., Sieff, C. A., Newburger, P. E., Niewiadomska, E., Matysiak, M., Gader, B., Atsidaftos, E., Lipton, J. M., Beggs, A. H., Gleizes, P. E., & Gazda, H. T. (2013). Novel deletion of RPL15 identified by array-comparative genomic hybridization in Diamond-Blackfan Anemia. Human Genetics, 132(11), 1265-1274. Lee, M., Dworkin, A. M., Lichtenberg, J., Patel, S. J., Gildea, D., Bodine, D. M., & Crawford, N. P. S. (2014). Metastasis-associated protein ribosomal RNA processing 1 Homolog B (RRP1B) modulates metastasis through regulation of histone methylation. Molecular Cancer Research, 12(12), 1818-1828. Léger-Silvestre, I., Milkereit, P., Ferreira-Cerca, S., Saveanu, C., Rousselle, J. C., Choesmel, V., Guinefoleau, C., Gas, N., & Gleizes, P. E. (2004). The ribosomal protein Rps15p is required for nuclear exit of the 40S subunit precursors in yeast. The EMBO Journal, 23(12), 2336-2347. Liang, J., Liu, Z., Zou, Z., Wang, X., Tang, Y., Zhou. C., Wu, K., Zhang, F., & Lu, Y. (2018). Knockdown of ribosomal protein S15A inhibits human kidney cancer cell growth in vitro and in vivo. Molecular Medicine Reports, 19(2), 1117-1127. Lin, C. T., Wong, C. I., Chan, W. Y., Tzung, K. W., Ho, J. K., Hsu, M. M., & Chuang S. M.(1990). Establishment and characterization of two nasopharyngeal carcinoma cell lines. Laboratory Investigation, 62(6), 713-724. Lin, C. T., Chan, W. Y., & Chen, W. (1993). Characterization of seven newly established nasopharyngeal carcinoma cell line. Laboratory Investigation, 68(6), 716-727. Liu, Z. (2016). Etiology and early detection of nasopharyngeal carcinoma – an epidemiological approach. Stockholm: Karolinska Institute. Lo, A. K. F., Liu, Y., Wang, X. H., Huang, D. P., Yuen, P. W., Wong, Y. C., & Tsao, G. S. W. (2003). Alterations of biologic properties and gene expression in nasopharyngeal epithelial cells by the Epstein-Barr virus-encoded latent membrane protein 1. Laboratory Investigation, 83(5), 697-709. Longnecker, R., Drunker, B., Roberts, T. M., & Kieff, E. (1991). An Epstein-Barr Virus Protein Associated with Cell Growth Transformation Interacts with a Tyrosine Kinase. Journal of Virology, 65(7), 3681-3692. Luscombe, N. M., Greenbaum, D., & Gerstein, M. (2001). What is Bioinformatics? A Proposed Definition and Overview of the Field. Methods of Information in Medicine, 40(4), 346-358. Mahdavifar, N., Ghoncheh, M., Mohammadian-Hafshejani, M., Khosravi, B., & Salehiniya, H. (2016). Epidemiology and Inequality in the Incidence and Mortality of Nasopharynx Cancer in Asia. Osong Public Health and Research Perspectives, 7(6), 360-372. Marion, M. J., & Marion, C. (1988). Ribosomal proteins S2, S6, S10, S14, S15 and S25 are localized on the surface of mammalian 40 S subunits and stabilize their conformation A study with immobilized trypsin. FEBS Letters, 232(2), 281-285. Martin, I., Kim , J. W., Lee, B. D., Kang, H. C., Xu, J. C., Jia, H., Stankowski, J., Kim, M. S., Zhong, J., Kumar, M., Andrabi, S. A., Xiong, Y., Dickson, D. W., Wszolek, Z. K., Pandey, A., Dawson, T. M., & Dawson, V. L. (2014). Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson’s disease. Cell, 157(2), 472-485. Nasopharyngeal cancer. (2013). American Cancer Society. http://www.cancer.org/acs/groups/cid/documents/webcontent/003124-pdf.pdf. Naora, H., & Naora, H. (1999). Involvement of ribosomal proteins in regulating cell growth and apoptosis: Translational modulation or recruitment for extraribosomal activity? Immunology and Cell Biology, 77(3), 197-205. Niinivirta, M., Enblad, G., Edgvist, P. H., Ponten, F., Dragomir, A., & Ullenhag, G. J. (2017). Tumoral cubilin is a predictive marker for treatment of renal cancer patients with sunitinib and sorafenib. Journal of Cancer Research and Clinical Oncology, 143(6), 961-970. Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., Campbell, N. H., Chavali, G., Chen, C., del-Toro, N., Duesbury, M., Dumousseau, M., Galeota, E., Hinz, U., Iannuccelli, M., Jagannathan, S., Jimenez, R., Khadake, J., Lagreid, A., Licata, L., Lovering, R. C., Meldal, B., Melidoni, A. N., Milagros, M., Peluso, D., Perfetto, L., Porras, P., Raghunath, A., Ricard-Blum, S., Roechert, B., Stutz, A., Tognolli, M., Roey, K. V., Cesareni, G., & Hermjakob, H. (2014). The MIntAct project – IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 42, D358-D363. Owen, T.A., Aronow, M.S., Barone, L.M., Bettencourt, B., Stein, G.S., & Lian, J.B. (1991). Pleiotropic Effects of Vitamin D on Osteoblast Gene Expression Are Related to the Proliferative and Differentiated State of the Bone Cell Phenotype: Dependency upon Basal Levels of Gene Expression, Duration of Exposure, and Bone Matrix Competency in Normal Rat Osteoblast Cultures*. Endocrinology, 128(3), 1496-1504. Panchenko, A. R., & Madej, T. (2004). Analysis of Protein Homology by Assessing the (Dis)similarity in Protein Loop Regions. Proteins, 57(3), 539-547. Pathmanathan, R., Prasad, U., Sadler, R., Flynn, K., & Raab-Traub, N. (1995). Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesion related to nasopharyngeal carcinoma. The New England Journal of Medicine, 333(11), 693-698. Prasanth, K. V., Prasanth, S. G., Xuan, Z., Hearn, S., Freier, S. M., Bennett, C. F., Zhang, M. Q., & Spector, D. L. (2005). Regulating Gene Expression through RNA Nuclear Retention. Cell, 123(2), 249-263. Ren, S., Peng, Z., Mao, J. H., Yu, Y., Yin, C., Gao, X., Cui, Z., Zhang, J., Yi, K., Xu, W., Chen, C., Wang, F., Guo, X., Lu, J., Yang, J., Wei, M., Tian, Z., Guan, Y., Tang, L., Xu, C., Wang, L., Gao, X., Tian, W., Wang, J., Yang, H., Wang, J., & Sun, Y. (2012). RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Research, 22(5), 806-821. Robledo, S., Idol, R. A., Crimmins, D. L., Ladenson, J. H., Mason, P. J., & Bessler, M. (2008). The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA, 14(9), 1918-1929. Rouquette, J., Choesmel, V., & Gleizes, P. E. (2005). Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. The EMBO Journal, 24(16), 2862-2872. Rovedo, M., & Longnecker, R. (2007). Epstein-Barr Virus Latent Membrane Protein 2B (LMP2B) Modulates LMP2A Activity. Journal of Virology, 81(1), 84-94. Salehiniya, H., Mohammadian, M., Mohammadian-Hafshejani, A., & Mahdavifar, N. (2018). Nasopharyngeal Cancer in the World: Epidemiology, Incidence, Mortality and Risk Factors. World Cancer Research Journal, 5(1), e1046. https://www.wcrj.net/article/1046. Sample, J., Liebowitz, D., & Kieff, E. (1989). Two Related Epstein-Barr Virus Membrane Proteins are Encoded by Separate Genes. Journal of Virology, 63(2), 933-937. Scholle, F., Bendt, K. M., & Raab-Traub, N. (2000). Epstein-Barr Virus LMP2A Transforms Epithelial Cells, Inhibits Cell Differentiation, and Activates Akt. Journal of Virology, 74(22), 10681-10689. Shen, C. L., Lie, C. D., You, R. I., Ching, Y. H., Liang, J., Ke, L., Chen, Y. L., Chen, H. C., Hsu, H. J., Liou, J. W., Kieff, E., & Peng, C. W. (2016). Ribosome Protein L4 is essential for Epstein-Barr Virus Nuclear Antigen 1 function. Proceedings of the National Academy of Sciences of the United States of America, 113(8), 2229-2234. Sim, E. U. H., Chan, S. L. L., Ng, K. L., Lee, C. W., & Narayanan, K. (2016). Human Ribosomal Proteins RPeL27, RPeL43, and RPeL41 are Upregulated in Nasopharyngeal Carcinoma Cell Lines. Disease Markers, 2016(5179594). http://dx.doi.org/10.1155/2016/5179594. Sim, E. U. H., Ma, X. R., Chan, S. L. L., Lee, C. W., & Narayanan, K. (2016). Predicted interaction of human Ribosomal Protein S15 with Fragile X Mental Retardation Protein. Journal of Applied Biology and Biotechnology, 4(2), 38-45. Sim, E. U. H., Chee, C. S. M., Vasudevan, L., Ng, K. L., & Chan, S. L. L. (2018). Selective Differential Expression of the Ribosomal Protein Genes eL14 and uS19 in a Well-Differentiated Epithelial Cell Line of Nasopharyngeal Carcinoma. Malaysian Applied Biology, 47(1), 247-253. Sim, E. U. H., & Talwar, S. P. (2019). In silico evidence of de novo interactions between ribosomal and Epstein-Barr virus proteins. BMC Molecular and Cell Biology, 20(34). https://doi.org/10.1186/s12860-019-0219-y. Spratt, D. E., & Lee, N. (2012). Current and emerging treatment options for nasopharyngeal carcinoma. Onco Targets and Therapy, 5, 297-308. Stelow, E. B., & Wenig, B. M. (2017). Update from the 4th Edition of the World Health Organization Classification of Head and Neck Tumours: Nasopharynx. Head Neck Pathology, 11(1), 16-22. Stelzl, U., Connell, S., Nierhaus, K. H., & Wittmann-Liebold, B. (2001). Ribosomal proteins: Role in ribosomal functions. Encyclopedia of Life Science. https://doi.org/10.1002/9780470015902.a0000687.pub4. Stricher, F., Macri, C., Ruff, M., & Muller, S. (2013). HSPA8/HSC70 chaperone protein: Structure, function, and chemical targeting. Autophagy, 9(12), 1937-1954. Tabuchi, K., Nakayama, M., Nishimura, B., Hayashi, K., & Hara, A. (2011). Early Detection of Nasopharyngeal Carcinoma. Hindawi Publishing Corporation, 2011(638058). doi:10.1155/2011/638058. Teow, S. Y., Yap, H. Y., & Peh, S. C. (2017) Epstein-Barr virus as a promising immunotherapeutic target for nasopharyngeal carcinoma treatment. Hindawi, 2017. Tiong, T. S., & Selva, K. S. (2005). Clinical presentation of nasopharyngeal carcinoma in Sarawak Malaysia. Medical Journal Malaysia, 60(5), 624-628. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M.J., Salzberg, S.L., Wold, B.J., & Pachter, L., (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5), 511-515. Tsao, S. W., Wang, X., Liu, Y., Cheung, Y. C., Feng, H., Zheng, Z., Wong, N., Yuen, P. W., Lo, A. K., Wong, Y. C., & Huang, D. P. (2002). Establishment of two immortalized nasopharyngeal epithelial cell lines using SV40 large T and HPV16E6/E7 viral oncogenes. Biochimica et Biophysica Acta, 1590(1-3), 150-158. Tsao, S. W., Yip, Y. L., Tsang, C. M., Pang, P. S., Lau, V. M. Y., Zhang, G., & Lo, K. W. (2014). Etiological factors of nasopharyngeal carcinoma. Oral Oncology, 50(5). 330-338. Tulalamba, W., & Janvilisri, T. (2012). Nasopharyngeal Carcinoma Signaling Pathway: An Update on Molecular Biomarkers. International Journal of Cell Biology, 2012(594681). doi:10.1155/2012/594681. Vogel, C., & Marcotte, E. M. (2013). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 13(4), 227-232. Wang, K., Chen, Z., Long, L., Tao. Y., Wu, Q., Xiang, M., Liang, Y., Xie, X., Jiang, Y., Xiao, Z., Yan, Y., Qiu, S., & Yi, B. (2018). iTRAQ-based quantitative proteomic analysis of differential expressed proteins in chemoresistant nasopharyngeal carcinoma. Cancer Biology & Therapy, 19(9), 809-824. Wee, J. T., Ha, T. C., Loong, S. L., & Qian, C. N. (2010). Is nasopharyngeal cancer really a “Cantonese cancer”?. Chinese Journal of Cancer, 29(5), 517-526. Wei, K., Zheng, R., Zhang, S., Liang, Z., Ou, Z., & Chen, W. (2014). Nasopharyngeal carcinoma incidence and mortality in China in 2010. Chinese Journal of Cancer, 33(8), 381-387. Wild, T., Horvath, P., Wyler, E., Widmann, B., Badertscher, L., Zemp, I., Kozak, K., Csucs, G., Lund, E., & Kutay, U. (2010). A protein inventory of human ribosome biogenesis reveals an essential function of exportin 5 in 60 S subunit export. PLOS Biology, 8(10), e1000522. https://doi.org/10.1371/journal.pbio.1000522. Wong, Q, W, L., Li, J., Ng, S. R., Lim, S. G., Yang, H., & Vardy, L. A. (2014). RPL39L is an example of a recently evolved ribosomal protein paralog that shows highly specific tissue expression patterns and is upregulated in ESCs and HCC tumors. RNA Biology, 11(1), 33-41. Young, L. S., & Dawson, C. W. (2014). Epstein-Barr virus and nasopharyngeal carcinoma. Chinese Journal of Cancer, 33(12), 581-590. Yu., M. C., Nichols, P. W., Zou, X. N., Estes, J., & Henderson, B. E. (1989). Induction of malignant nasal cavity tumours in Wistar rats fed Chinese salted fish. British Journal of Cancer, 60(2), 198-201. Zheng, Y. M., Tuppin, P., Hubert, A., Jeannel, D., Pan, Y. J., Zeng, Y., & de The, G. (1994). Environmental and dietary risk factors for nasopharyngeal carcinoma: a case- control study in Zangwu County, Guangxi, China. British Journal of Cancer, 69(3), 508-514. Zhou, X., Liao, W. J., Liao, J. M., Liao, P., & Lu, H. (2015). Ribosomal protein: functions beyond the ribosome. Journal of Molecular Cell Biology, 7(2), 92-104.