Assessing The Effectiveness of RAPD and ISSR Markers on The Genetic Variation of MD2 Pineapple (Ananas comosus var MD2) Clones
The cultivation practice of pineapple plant through tissue culture method has led to numerous abnormalities such as dwarfism, small fruit and small crown which are not suitable for commercialisation. Morphological description as early intervention has resulted in the loss of energy, time and money s...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | http://ir.unimas.my/id/eprint/34534/1/Fifi%20Hafizzah.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-unimas-ir.34534 |
---|---|
record_format |
uketd_dc |
institution |
Universiti Malaysia Sarawak |
collection |
UNIMAS Institutional Repository |
language |
English |
topic |
QH301 Biology QH426 Genetics |
spellingShingle |
QH301 Biology QH426 Genetics Fifi Hafizzah, Pendi Assessing The Effectiveness of RAPD and ISSR Markers on The Genetic Variation of MD2 Pineapple (Ananas comosus var MD2) Clones |
description |
The cultivation practice of pineapple plant through tissue culture method has led to numerous abnormalities such as dwarfism, small fruit and small crown which are not suitable for commercialisation. Morphological description as early intervention has resulted in the loss of energy, time and money since the indicator relies upon morphology changes posed by the individual plant. Despite enormous research studies on DNA based molecular markers to detect genetic variation among plants, there were no study has been done on genetic fidelity study among micropropagated MD2 pineapple plants using DNA based molecular markers. Thus, this study aimed to assess genetic variation among clonally raised MD2 pineapple plants using Random Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) molecular markers. A total of 22 genomic DNA amplified using six RAPD and six anchored ISSR markers. RAPD markers generated a total of 120 bands with 93% polymorphism percentage whereas the ISSR markers generated a total of 93 bands with 73% polymorphism percentage. Evaluation through resolving power (Rp), polymorphism information content (PIC) and marker index (MI) showed RAPD markers (Rp=7.08; PIC=0.34; MI=1.72)are more informative compared to ISSR markers (Rp=4.17; PIC=0.32; MI=1.00). Clustering analyses using Principal Component Analysis (PCA) and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) resulted in the indefinite clustering patterns while the dendrograms revealed the inability of the markers to correlate the plant morphology with their genetic structure. AMOVA analysis found high genetic variation within groups of pineapple with variation percentage >70% and Phi statistic estimated wide genetic variation among the studied genotypes. In general, the RAPD and ISSR markers revealed that the plant's morphology did not evitably correlate to its genetic structure. The results obtained are closely related with the genome coverage and the loci number detected by the molecular markers. This study may form the basis for MD2 breeding program and exploring other molecular markers that can potentially corresponds to the phenotypic polymorphisms. |
format |
Thesis |
qualification_level |
Master's degree |
author |
Fifi Hafizzah, Pendi |
author_facet |
Fifi Hafizzah, Pendi |
author_sort |
Fifi Hafizzah, Pendi |
title |
Assessing The Effectiveness of RAPD and ISSR Markers on The Genetic Variation of MD2 Pineapple (Ananas comosus var MD2) Clones |
title_short |
Assessing The Effectiveness of RAPD and ISSR Markers on The Genetic Variation of MD2 Pineapple (Ananas comosus var MD2) Clones |
title_full |
Assessing The Effectiveness of RAPD and ISSR Markers on The Genetic Variation of MD2 Pineapple (Ananas comosus var MD2) Clones |
title_fullStr |
Assessing The Effectiveness of RAPD and ISSR Markers on The Genetic Variation of MD2 Pineapple (Ananas comosus var MD2) Clones |
title_full_unstemmed |
Assessing The Effectiveness of RAPD and ISSR Markers on The Genetic Variation of MD2 Pineapple (Ananas comosus var MD2) Clones |
title_sort |
assessing the effectiveness of rapd and issr markers on the genetic variation of md2 pineapple (ananas comosus var md2) clones |
granting_institution |
Universiti Malaysia Sarawak (UNIMAS) |
granting_department |
Faculty of Resource Science and Technology (FSTS) |
publishDate |
2021 |
url |
http://ir.unimas.my/id/eprint/34534/1/Fifi%20Hafizzah.pdf |
_version_ |
1783728428116082688 |
spelling |
my-unimas-ir.345342023-11-21T06:24:37Z Assessing The Effectiveness of RAPD and ISSR Markers on The Genetic Variation of MD2 Pineapple (Ananas comosus var MD2) Clones 2021-03 Fifi Hafizzah, Pendi QH301 Biology QH426 Genetics The cultivation practice of pineapple plant through tissue culture method has led to numerous abnormalities such as dwarfism, small fruit and small crown which are not suitable for commercialisation. Morphological description as early intervention has resulted in the loss of energy, time and money since the indicator relies upon morphology changes posed by the individual plant. Despite enormous research studies on DNA based molecular markers to detect genetic variation among plants, there were no study has been done on genetic fidelity study among micropropagated MD2 pineapple plants using DNA based molecular markers. Thus, this study aimed to assess genetic variation among clonally raised MD2 pineapple plants using Random Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) molecular markers. A total of 22 genomic DNA amplified using six RAPD and six anchored ISSR markers. RAPD markers generated a total of 120 bands with 93% polymorphism percentage whereas the ISSR markers generated a total of 93 bands with 73% polymorphism percentage. Evaluation through resolving power (Rp), polymorphism information content (PIC) and marker index (MI) showed RAPD markers (Rp=7.08; PIC=0.34; MI=1.72)are more informative compared to ISSR markers (Rp=4.17; PIC=0.32; MI=1.00). Clustering analyses using Principal Component Analysis (PCA) and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) resulted in the indefinite clustering patterns while the dendrograms revealed the inability of the markers to correlate the plant morphology with their genetic structure. AMOVA analysis found high genetic variation within groups of pineapple with variation percentage >70% and Phi statistic estimated wide genetic variation among the studied genotypes. In general, the RAPD and ISSR markers revealed that the plant's morphology did not evitably correlate to its genetic structure. The results obtained are closely related with the genome coverage and the loci number detected by the molecular markers. This study may form the basis for MD2 breeding program and exploring other molecular markers that can potentially corresponds to the phenotypic polymorphisms. Universiti Malaysia Sarawak (UNIMAS) 2021-03 Thesis http://ir.unimas.my/id/eprint/34534/ http://ir.unimas.my/id/eprint/34534/1/Fifi%20Hafizzah.pdf text en validuser masters Universiti Malaysia Sarawak (UNIMAS) Faculty of Resource Science and Technology (FSTS) Abd. Halim, N. (2016). Policy Intervention for the Development of the Pineapple Industry in Malaysia. Food and Fertilizer Technology Center for the Asian and Pacific Region, 5(1),65-70. Abdel-Latif, A., & Osman, G. (2017). Comparison of three genomic DNA extraction to obtain high DNA quality from maize. Plant Methods, 13(1), 1-9. Aboul-Maaty, N. A. F., & Oraby, H. A. S. (2019). Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre, 43(25), 1-10. Adams, R. L. P., Knowler, J. T., & Leader, D. P. (1992). The biochemistry of nucleic acids. London, New York: Chapman and Hall. Adhikari, S., Saha, S., Biswas, A., Rana, T. S., Bandyopadhyay, T. K., & Ghosh, P. (2017). Application of molecular markers in plant genome analysis: a review. The Nucleus, 60(3), 283-297. Ahn, S. J., Costa, J., & Emanuel, J. R. (1996). PicoGreen quantitation of DNA: effective evaluation of samples pre- or post-PCR. Nucleic Acids Research, 24(13), 2623-2625. Ajibade, S. R., Weeden, N. F., & Michite, S. (2000). Inter simple sequence repeat analysis of genetic relationships in genus Vigna Euphytica, 111(1), 47-55. Akdemir, H., Suzerer, V., Tilkat, E., Onay, A., & Çiftçci, Y. O. (2016). Detection of variation in long-term micropropagated mature pistachio via DNA-based molecular markers. Applied Biochemistry and Biotechnology, 180(1), 1301-1312. Al-Qurainy, F., Nadeem, M., Khan, S., Alansi, S., Tarroum, M., Al-Ameri, A. A., Gaafar, A. Z., & Alshameri, A. (2018). Rapid plant regeneration, validation of genetic integrity by ISSR markers and conservation of Reseda pentagyna an endemic plant growing in Saudi Arabia. Saudi Journal of Biological Sciences, 25(1), 111-116. Ali, Q., Salisu, I. B., Raza, A., Shahid, A. A., Rao, A. Q., & Husnain, T. (2019). A modified protocol for rapid DNA isolation from cotton (Gossypium spp.). MethodsX, 6, 259- 264. Aljanabi, S. M., Forget, L., & Dookun, A. (1999). An improved and rapid protocol for the isolation of polysaccharide and polyphenol free sugarcane DNA. Plant Molecular Biology Reporter, 17(3), 281-282. Allel, D., Ben-Amar, A., Lamine, M., & Abdelly, C. (2017). Relationships and genetic structure of North African barley (Hordeum vulgare L.) germplasm revealed by morphological and molecular markers: Biogeographical considerations. South African Journal of Botany, 112(1), 1-10. Almeida, W. A. B. D., Santana, G. S., Rodriguez, A. P., & Costa, M. A. P. D. C. (2002). Optimization of a protocol for the micropropagation of pineapple. Revista Brasileira de Fructicultura, 24(2), 296-300. Almeida-Pereira, C. S., Silva, A. V. C., Alves, R. P., Feitosa-Alcantara, R. B., Arrigoni Blank, M. F., Alvares-Carvalho, S. V., Costa, T. S., White, L. A. S., Pinto, V. S., Sampaio, T. S., & Blank, A. F. (2017). Genetic diversity of native populations of Croton tetradenius Baill. using ISSR markers. Genetics and Molecular Research, 16(2), 1-12. Ambrosi, D. G., Galla, G., Purelli, M., Barbi, T., Fabbri, A., Lucretti, S., Sharbel, T. F., & Barcaccia, G. (2010). DNA markers and FCSS analyses shed light on the genetic diversity and reproductive strategy of Jatropha curcas L. Diversity, 2(5), 810-836. Amiryousefi, A., Hyvӧnen, J., & Poczai, P. (2018). iMEC: online marker efficiency calculator: Applications in Plant Sciences, 6(6), 1-4. Anderson, C. B., Franzmayr, B. K., Hong, S. W., Larking, A. C., Van Stijn, T. C., Tan, R., Moraga, R., Faville, M. J., & Griffiths, A. G. (2018). Protocol: a versatile, inexpensive, high-throughput plant genomic DNA extraction method suitable for genotyping-by-sequencing. Plant Methods, 14(75), 1-10. Anonymous. (2018). Industrial crops statistics. Department of Agriculture, Putrajaya, Malaysia. 95 Arif, M., Zaidi, N. W., Singh, Y. P., Haq, Q. M. R., & Singh, U. S. (2009). A comparative analysis of ISSR and RAPD markers for study of genetic diversity in Shisham (Dalbergia sissoo). Plant Molecular Biology Reporter, 27(4), 488-495. Barral, B., Chillet, M., Léchaudel, M., Lartaud, M., Verdeil, J. L., Conéjéro, G., & Schorr Galindo, S. (2019). An imaging approach to identify mechanisms of resistance to pineapple fruitlet core rot. Plant Pathogens Interactions, 10(1), 1-12. Barret, P., Brinkman, M., & Beckert, M. (2006). A sequence related to rice Pong transposable element displays transciptional activation by in in vitro culture and reveals somaclonal variations in maize. Genome, 49(1), 1399-1407. Bartholomew, D. P., Hawkins, R. A., & Lopez, J. A. (2012). Hawaii Pineapple: The Rise and Fall of an Industry. HortScience, 47(10), 1390-1398. Baruah, J., Gogoi, B., Das, K., Ahmed, N. M., Sarmah, D. K., Lal, M., & Bhau, B. S. (2016). Genetic diversity study amongst Cymbopogon species from NE-India using RAPD and ISSR markers. Industrial Crops and Products, 95(1), 235-243. Baruah, J., Pandey, S. K., Begum, T., Sarma, N., Paw, M., & Lal, M. (2019). Molecular diversity assessed amongst high dry rhizome recovery ginger germplasm (Zingiber officinale Roscoe) from NE-India using RAPD and ISSR markers. Industrial Crops and Products, 129(1), 463-471. Bednarek, P. T., & Orłowska, R. (2020). Plant tissue culture environment as a switch-key of (epi)genetic changes. Plant Cell, Tissue and Organ Culture, 140(2), 245-257. Bewick, A. J., & Schmitz, R. J. (2017). Gene body DNA methylation in plants. Current Opinion in Plant Biology, 36(1), 103-110. Bhardwaj, M., Uppal, S., Jain, S., Kharb, P., Dhillon, R., & Jain, R. K. (2010). Comparative assessment of ISSR and RAPD marker assays for genetic diversity analysis of jojoba (Simmondsia chinensis (Link) Schneider) Journal of Plant Biochemistry and Biotechnology, 19(2), 255-258. Bhat, S., Curach, N., Mostyn, T., Bains, G. S., Griffiths, K. R., & Emslie, K. R. (2010). Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units. Analytical Chemistry, 82(17), 7185- 7192. Bhatia, S., & Sharma, K. (2015). Technical Glitches in Micropropagation. In K. Jones (Ed.), Modern Applications of Plant Biotechnology in Pharmaceutical Sciences. (pp. 393- 404). London Wall, UK: Mica Haley. Boesenberg-Smith, K. A., Pessarakli, M. M., & Wolk, D. M. (2012). Assessment of DNA yield and purity: an overlooked detail of PCR troubleshooting. Clinical Microbiology Newsletter, 34(1), 3-6. Bostein, D., White, R. L., Skalnick, M. H., & Davies, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics, 32(1), 314-331. Bublyk, O. M., Andreev, I. O., Kalendar, R. N., Spiridonova, K. V., & Kunakh, V. A. (2013). Efficiency of different PCR-based marker systems for assessment of Iris pumila genetic diversity. Biologia, 68(4), 613-620. Cai, Y., Sun, D., Wu, G., & Peng, J. (2010). ISSR-based genetic diversity of Jatropha curcas germplasm in China. Biomass and Bioenergy, 34(12), 1739-1750. Cazzonelli, C. I., Cavallaro, A. S., & Botella, J. R. (1998). Cloning and characterisation of ripening-induced ethylene biosynthetic genes from non-climacteric pineapple (Ananas comosus) fruits. Functional Plant Biology, 25(5), 513-518. Chan, Y. K., d’ Eeckenburgge, C., & Sanewski, G. M. (2003). Breeding and variety improvement. In D. Bartholomew, R. E. Paull, & K. G. Rohrbach (Eds.), The Pineapple Botany, Production and Uses (pp. 33-55). Wallingford: CAB International. Chauhary, S., Mishra, B. K., Vivek, T., Magadum, S., & Yasin, J. K. (2016). PineElm_SSRdb: a microsatellite marker database identified from genomic, chloroplast, mitochondrial and EST sequences of pineapple (Ananas comosus (L.) Merrill). Hereditas, 153(1), 16-22. Chesnokov, Y. V., & Artemyeva, A. M. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Agricultural Biology, 50(5), 571-578. Cipriano, J., Carvalho, A., Fernandes, C., Gaspar, M. J., Pires, J., Bento, J., Roxo, L., Louzada, J., & Lima-Brito, J. (2016). Evaluation of genetic diversity of Portuguese Pinus sylvestris L. populations based on molecular data and inferences about the future used of this germplasm. Journal of Genetics, 93(2), 41-48. Clark, M. S. (1997). Plant molecular biology - a laboratory manual. [e-book] New York: Springer. Available through Google Scholar < https://books.google.com.my/books?id=NR3CAAAQBAJ&dq=Clark,+M.+S.+(199 7).+Plant+molecular+biology+a+laboratory+manual.+Berlin,+Germany:+Springer. &lr=&source=gbs_navlinks_s [Accessed on 15 September 2020]. Collins, J. L. (1960). The pineapple, botany, utilisation, cultivation. London: Leonard Hill Ltd. Costa, R., Pereira, G., Garrido, I., de-Sousa, M. M. T., & Espinosa, F. (2016). Comparison of RAPD, ISSR and AFLP molecular markers to reveal and classify orchardgrass (Dactylis glomerata L.) germplasm variations. PLoS One, 11(4), 1-15. Cui, C., Li, Y., Liu, Y., Li, X., Luo, S., Zhang, Z., Wu., R., Liang, G., Sun, J., Peng, J., & Tian, P. (2016). Determination of genetic diversity among Saccharina germplasm using ISSR and RAPD markers. Comptes Rendus Biologies, 340(2), 76-86. d’Eeckenbrugge, G. C., & Govaerts, R. (2015). Synonymies in Ananas (Bromeliaceae). Phytotaxa, 239(3), 273-279. d’Eeckenbrugge, G. C., & Leal, F. (2018). Morphology, anatomy and taxonomy. In G. M. Sanewski, D. P. Bartholomew, & R. E. Paull (Eds.), The Pineapple: Botany, Production and Uses (Vol. 2, pp. 11-31). Wallingford, Uk: CABI. Dangi, R. S., Lagu, M. D., Choudhary, L. B., Ranjekar, P., & Gupta, V. S. (2004). Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biology, 4(13), 1-11. Dellaporta, S. L., Wood, J. A., & Hicks, J. B. (1983). A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1(4), 19-21. DeWald, M. G., Moore, G. A., Sherman, W. B., & Evans, M. H. (1988). Production of pineapple plants in vitro. Plant Cell Reports, 7(7), 535-537. Dias, M. I., Sousa, M. J., Alves, R. C., & Ferreira, I. C. (2016). Exploring plant tissue culture to improve the production of phenolic compounds: a review. Industrial Crops and Products, 82(1), 9-22. Dilhari, A., Sampath, A., Gunasekara, C., Fernando, N., Weerasekara, D., Sissons, C., McBain, A., & Weerasekara, M. (2017). Evaluation of the impact of six different DNA extraction methods for the representation of the microbial community associated with human chronic wounds infections using a gel-based DNA profiling method. AMB Express, 7(1), 179-190. Dos Santos, J., Nienhuis, J., Skroch, P., Tivang, J., & Slocum, M. K. (1994). Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theoretical and Applied Genetics, 87(8), 909-915. Ebrahimi, M., Farajpour, M., & Rahimmalek, M. (2012). Inter- and intra-specific genetic diversity of Iranian yarrow species Achilliea santolina and Achillea tenuifolia based on ISSR and RAPD markers. Genetics and Molecular Research, 11(3), 2855-2861. Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19(6), 1349. El-Ashram, S., Al Nasr, I., & Suo, X. (2016). Nucleic acid protocols: Extraction and optimization. Biotechnology Reports, 12(1), 33-39. English, C. A., Merson, S., & Keer, J. T. (2006). Use of Elemental Analysis to Determine Comparative Performance of Established DNA Quantification Methods. Analytical Chemistry, 78(13), 4630-4633. Eshghi, R., Ebrahimpour, F., Ojaghi, J., Salayeva, S., Baraty, M., & Rahimi, M. (2012). Evaluation of genetic variability in naked barley (Hordeum vulgare L.) International Journal of Agriculture and Crop Sciences, 4(16), 1166-1179. Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance Inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics Society of America, 131(1), 479-491. Fang, G., Hammer, S., & Grumet, R. (1992). A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques, 13(1), 52-54. FAOSTAT, F. (2018). Statistics division of food and agriculture organisation of the United Nations. Farajpour, M., Ebrahimi, M., Reza, A., Noori, S. A. S., Sanjari, S., & Golzari, R. (2011). Study of genetic variation in yarrow using inter-simple sequence repeat (ISSR) and random amplified polymorhic DNA (RAPD) markers. African Journal of Biotechnology, 10(54), 11137-11141. Feng, S., Cokus, S. J., Zhang, X., Chen, P. Y., Bostick, M., Goll, M. G.,Hetzel, J., Jain, J., Strauss, S. H., Helpern, M. E., Ukomadu, C., Sadler, K. C., Pradhan, S., Pellegrini, M., & Jacobsen, S. E. (2010a). Conservation and divergence of methylation patterning in plants and animals. Proceedings of the National Academy of Sciences, USA, 107(1), 8689-8694. Feng, S., Tong, H., Chen, Y., Wang J., Chen, Y., Sun, G., He, J., & Wu, Y. (2013). Development of pineapple microsatellite markers and germplasm genetic diversity analysis. BioMed Research International, 2013(1), 1-11. Fernandez, M., Figueiras, A., & Benito, C. (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics, 104(5), 845-851. Feuser, S., Meler, K., Daquinta, M., Guerra, M. P., & Nodari, R. O. (2003). Genotypic fidelity of micropropagated pineapple (Ananas comosus) plantlets assessed by isozyme and RAPD markers. Plant Cell, Tissue and Organ Culture, 72(3), 221-227. Finnegan, E. J., Genger, R. K., Peacock, W. J., & Dennis, E. S. (1998). DNA methylation in plants. Annual Review of Plant Biology, 49(1), 223-247. Gallego-Bartolomé. (2020). DNA methylation in plants: mechanisms and tools for targeted manipulation. New Phytologist, 227(1), 38-44. Garcia, M. G., Ontivero, M., Diaz Ricci, J. C., & Castagnaro, A. (2002). Morphological traits and high-resolution RAPD markers for the identification of the main strawberry varieties in Argentina. Plant Breed, 121(1), 76-80. García-Sandoval, R. (2014). Why some clades have low bootstrap frequencies and high Bayesian posterior probabilities. Israel Journal of Ecology & Evolution, 60(1), 41-44. Garrido-Cardenas, J. A., Mesa-Valle, C., & Manzano-Agugliaro, F. (2018). Trends in plant research using molecular markers. Planta, 247(3), 543-557. Gbènato, A. E., & Clément, A. (2016). Optimizing genomic DNA isolation in pineapple(Ananas comosus L.). Journal of Plant Breeding and Genetics, 4(1), 11-18. Ghimire, B. K., Yu, C. Y., Kim, S. H., & Chung, I. M. (2019). Diversity in acessions of Panicum miliaceum L. based on agro-morphological, antioxidative, and genetic traits. Molecules, 24(1), 1012-1037. Giachino, A. (2019). Investigation of the genetic variation of anise (Pimpinella anisum L.) using RAPD and ISSR markers. Genetic Resources and Crop Evolution, 67(3), 763-780. Gilmartin, A. J., & Brown, G. K. (1987). Bromeliales, related monocots, and resolution of relationships among Bromeliaceae and subfamilies. Systematic Botany, 12(4), 493-500. Gindullis, F., Desel, C., Galasso, I., & Schmidt, T. (2001). The large-scale organisation of the centromeric region in Beta species. Genome Research, 11(2), 253-265. Gonçalves, L. S. A., Rodrigues, R., Amaral Júnior, A. T., Karasawa, M., & Sudré, C. P.(2008). Comparison of multivariate statistical algorithms to cluster tomato heirloom accessions. Genetics and Molecular Research, 7(4), 1289-1297. Grativol, C., da Fonseca Lira-Medeiros, C., Hemerly, A. S., & Ferreira, P. C. G. (2010). High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazillian cultivated Jatropha curcas L. accessions. Molecular Biology Reports, 38(7), 4245-4256. Green, M. R., & Sambrook, J. (2018). Isolation and Quantification of DNA. Cold Spring Harbor Protocols, 2018(6), 1-13. Grover, A., & Sharma, P. C. (2016). Development and use of molecular markers: past and present Critical Reviews in Biotechnology, 36(2), 290-302. Guasmi, F., Elfalleh, W., Hannachi, H., Fères, K., Touil, L., Marzougui, N., Triki, T., & Ferchichi, A. (2012). The use of ISSR and RAPD markers for genetic diversity among South Tunisian barley. International Scholarly Research Network Agronomy, 2012(1), 1-10. Guo, W. L., Gong, L., Ding, Z. F., Li, Y. D., Li, F. X., Zhao, S. P., & Liu, B. (2006). Genomic instability in phenotypically normal regenerants of medicinal plant Codonopsis lanceolata Benth. et Hook. f., as revealed by ISSR and RAPD markers. Plant Cell Reports, 25(9), 896-906. Guo, W. L., Wu, R., Zhang, Y. F., Liu, X. M., Wang, H. Y., Gong, L., Zhang, Z. H., & Liu, B. (2007). Tissue culture-induced locus-specific alteration in DNA methylation and its correlation with genetic variation in Codonopsis lanceolata Benth. et Hook. f. Plant Cell Reports, 26(8), 1297-1307. Halim, N. A. A., Tan, B. C., Midin, M. R., Madon, M., Khalid, N., & Yaacob, J. S. (2018). Abscisic acid and salinity stress induced somaclonal variation and increased histone deacetylase (HDAC) activity in Ananas comosus var. MD2. Plant, Cell, Tissue and Organ Culture, 133(1), 123-135. Hamid, N. S., Bukhori, M. F. M., & Jalil, M. (2013). Direct and indirect plant regenerations of pineapple var. MD2 (Ananas comosus L.). Malaysian Applied Biology Journal, 42(1), 61-66. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1-9. Hanjalić, J., Lasić, L., Gaši, F., Meland, M., Grahic, J., & Stroil, B. K. (2018). The applicability of three DNA isolation methods in SSR analysis of hexaploid plum (Prunus domestica L.) cultivars. Genetics and Applications, 2(1), 1-7. Harsha, H., Meena, J. K., Bhajan, R., Pant, U., & Talha, M. (2016). Assessment of genetic diversity using DNA markers among Brassica rapa var. yellow sarson gemplasm lines collected from Eastern Uttar Pradesh and Uttarakhand hills. Journal of Applied and Natural Science, 8(3), 1333-1340. Hartmann, H. D., & Kester, D. E. (1990). Plant propagation: principles and practices. (4th ed.). New Jersey: Prentice-Hall, Inc. He, W., Guo, L., Wang, L., Yang, W., Tang, L., & Chen, F. (2007). ISSR analysis of genetic diversity of Jatropha curcas L. Chinese Journal of Applied and Environmental Biology, 13(4), 466-470. Hirochika, H. (1993). Activation of tobacco transposons during tissue culture. EMBO Journal, 12(1), 2521-2528. Ismail, N. A., Rafii, M. Y., Mahmud, T. M. M., Hanafi, M. M., & Miah, G. (2019). Genetic diversity of torch ginger (Etlingera elatior) germplasm revealed by ISSR and SSR markers. BioMed Research International, 2019(1), 1-14. Izzatullayeva, V., Akparov, Z., Babayeva, S., Ojaghi, J., & Abbasov, M. (2014). Efficiency of using RAPD and ISSR markers in evaluation of genetic diversity in sugar beet. Turkish Journal of Biology, 38(4), 429-438. Jackson, D., Williams, S., Newby, D. M., Hall, S., Higgins, S., Francis, R., & Smith, A. M. (2016). Tissue cultured versus traditionally grown pineapples: growth and nutrient profile. Journal of Biotechnology and Biomaterials, 6(3), 237-245. Jaji, K., Man, N., & Nawi, N. M. (2018). Factors affecting pineapple market supply in Johor, Malaysia. International Food Research Journal, 25(1), 366-375. Jost, L. (2008). Gst and its relatives do not measure differentiation. Molecular Ecology, 17(1), 4015-4026. Joy, P. P., & Sindhu, G. (2012). Disease of pineapple (Ananas comosus): pathogen, symptoms, infection, spread & management. [online] Available at https://www.researchgate.net/profile/Anjana_R/publication/284168155_Insect_Pest s_of_Pineapple_and_their_Management/links/564d921d08ae4988a7a4581b/Insect�Pests-of-Pineapple-and-their-Management.pdf [Accessed on 12 September 2018]. Kaeppler, S. M., Kaeppler, H. F., & Rhee, Y. (2000). Epigenetic aspects of somaclonal variation in plants. Plant Molecular Biology Reporter, 43(1), 179-188. Kaeppler-Hanno, K. (2010). Troubleshootinh guide for the measurement of nucleic acids with the BioPhotometer plus. In Userguide No 13. Hamburg, Germany: Eppendorf. Kanupriya, S. M., Vasugi, C., Aswath, C., Radhika, V., Reddy, L., & Dinesh, M. (2012). Genetic relationship among papaya (Carica papaya) and wild papaya (Vasconcellea species) using RAPD and ISSR markers. Indian Journal of Agricultural Sciences, 82(4), 366-369. Karuppanapandian, T., Wang, H. W., Karuppudurai, T., Rajendhran, J., Kwon, M., Jang, C. S., Kim, S. H., Manoharan, K., & Kim, W. (2010). Efficiency of RAPD and ISSR markers in assessing genetic diversity and relationships in black gram (Vigna mungo L. Hepper) varieties. Canadian Journal of Plant Science, 90(4), 444-452. Kasajima, I. (2018). Successful tips of DNA extraction and PCR of plants for beginners. Trends in Research, 1(3), 1-6. Kayis, S. A., Hakki, E. E., & Pinarkara, E. (2010). Comparison of effectiveness of ISSR and RAPD markers in genetic characterization of seized marijuana (Cannabis sativa L.) in Turkey. African journal of agricultural research, 5(21), 2925-2933. Khan, S., Kauser, N., Kayani, H. A., Mirbahar, A. A., & Noman, B. (2015). Effect of grinding agents and detergents on the quality of extracted DNA from diverse plant species. International Journal of Biology and Biotechnology, 12(1), 39-45. Kinsuat, M. J., & Kumar, S. V. (2007). Polymorphic microsatellite and cryptic simple repeat sequence markers in pineapple (Ananas comosus var comosus). Molecular Ecology Notes, 7(6), 1032-1035. Koetsier, G., & Cantor, E. (2019). A practical guide to analysing nucleic acid concentration and purity with microvolume spectrophotometer: technical note. New England Biolabs Incorporation, 1-19. Kohpaii, F. N., Farahani, F., & Noormohammadi, Z. (2017). Somaclonal variation in the in vitro regenerated pineapple (Ananas comosus): investigation of the cellular characteristics, biochemical specificities and ISSR markers. Phytologia Balcanica, 23(1), 73-83. Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(1), 54-72. Kuhn, R., Böllmann, J., Krahl, K., Bryant, I. M., & Martienssen, M. (2017). Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples. Journal of Microbiological Methods, 143(1), 78-86. Kumar, H., Priya, P., Singh, N., Kumar, M., Choudhary, B. K., Kumar, L., Singh, I. S., & Kumar, N. (2016). RAPD and ISSR marker-based comparative evaluation of genetic diversity among Indian germplasms of Euryale ferox: an aquatic food plant. Applied Biochemistry and Biotechnology, 180(1), 1345-1360. Kumari, V., Bansal, A., Aminedi, R., Taneja, D., & Das, N. (2012). Simplified extraction of good quality genomic DNA from a variety of plant materials. African Journal of Biotechnology, 11(24), 6420-6427. Lal, N., Datta, J., Kaashyap, M., & Gupta, P. (2010). Efficiency of three PCR based marker systems for detecting DNA polymorphism in Cicer arietinum L. and Cajanus cajan L. Millspaugh. Journal of Genetic Engineering and Biotechnology, 5(1), 1-15. Larkin, P. J., Ryan, S. A., Brettell, R. I., & Scowcroft, W. R. (1984). Heritable somaclonal variation in wheat. Theoretical and Applied Genetics, 67(5), 443-455. Larkin, P. J., & Scowcroft, W. R. (1981). Somaclonal variation - a novel source if variability from cell cultures fro plant improvement. Theoretical and Applied Genetics, 60(4), 197-214. Lasekan, O., & Hussein, F. K. (2018). Classification of different pineapple varieties grown in Malaysia based on volatile fingerprinting and sensory analysis. Chemistry Central Journal, 12(140), 1-12. Laurentin, H. (2009). Data analysis for molecular characterisation of plant genetic resources. Genetic Resources and Crop Evolution, 56(1), 277-292. Leva, A. R., & Rinaldi, L. M. R. (2017). Somaclonal variation. Encyclopedia of Applied Plant Sciences, 2(2), 1-6. Li, X., Wu, Y., Zhang, L., Cao, Y., Li, Y., Li, J., Zhu, L., & Wu, G. (2014). Comparison of three common DNA concentration measurement methods. Analytical Biochemistry, 451(1), 18-24. Liu, Z. J., & Cordes, J. F. (2004). DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238(1-4), 1-37. Loarce, Y., Gallego, R., & Ferrer, E. (1996). A comparative analysis of genetic relationships between rye cultivars using RFLP and RAPD markers. Euphytica, 88(1), 107-115. Lynch, M., & Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology, 3(1), 91-99. Mafakheri, M., Kordrostami, M., Rahimi, M., & Matthews, P. D. (2020). Evaluating genetic diversity and structure of a wild hop (Humulus lupulus L.) germplasm using morphological and molecular characteristics. Euphytica, 216(4), 1-19. Makaranga, A., Seth, M. S., Ndee, A., Mneney, E. E., Mbwambo, G., Lema, K., & Msogoya, T. J. (2018). Diversity and genetic identity of pineapple [Ananas comosus (L.) Merr.] in Tanzania based on microsatellite markers. African Journal of Biotechnology, 17(26), 811-817. Martial, K. N., Mamadou, C., Tchoa, K., Souleymane, S., Nadia, K. A., Seydou, T., Martin, A. A., Martial, K. K. J. F., Lezin, B. E., Brahima, C., Fatogoma, S., Emmanuel, D. A., & Daouda, K. (2020). Effect of strain age and substrate on the production of pineapple (Ananas comosus L.) extra sweet (MD2) vivo plants in greenhouse. Asian Research Journal of Agriculture, 13(2), 1-12. Martínez, O. (2018). Selection of molecular markers for the estimation of somaclonal variation. In V. M. Loyola-Vargas & N. Ochoa-Alejo (Eds.), Plant cell culture protocols, methods in molecular biology (4th ed., Vol. 1815, pp. 103-129). New York: Humana Press. Marwal, A., Sahu, A. K., & Gaur, R. K. (2014). Molecular markers: tool for genetic analysis In A. S. Verma & A. Singh (Eds.), Animal Biotechnology: Models in Discovery and Translation (pp. 289-305). Massachusetts: Academic Press. Matuszak-Renger, S., Paule, J., Heller, S., Leme, E. M. C., Steinbeisser, G. M., Barfuss, M. H. J., & Zizka, G. (2018). Phylogenetic relationships among Ananas and related taxa (Bromelioideae, Bromeliaceae) based on nuclear, plastid and AFLP data. Plant Systematics and Evolution, 304, 841-851. McIlroy, S. J., Porter, K., Seviour, R. J., & Tillett, D. (2009). Extraction nucleic acid from activated sludge which reflect community population diversity. Antonie Van Leeuwenhoek, 96(4), 593-605. Medhi, K., Sarmah, D. K., Deka, M., & Bhau, B. S. (2014). High gene flow and genetic diversity in three economically important Zanthoxylum Spp. of upper Brahmaputra valley zone of NE India using molecular markers. Meta Gene, 2(1), 706-721. Miguel, C., & Marum, L. (2011). An epigenetic view of plant cells cultured in vitro somaclonal variation and beyond. Journal of Experimental Botany, 62(1), 2713- 3725. Mohammadi, S. A., & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants�salient statistical tools and considerations. Crop Science, 43(4), 1235-1248. Moreira, B. C., Junior, P. P., Jordao, T. C., da Silva, M. D. C. S., Stürmer, S. L., Salomão, L. C. C., & Kasuya, M. C. M. (2016). Effect of inoculation of symbiotic fungi on the growth and antioxidant enzymes’ activities in the presence of Fusarium subglutinans f. sp. ananas in pineapple plantlets. Acta Physiologiae Plantarum, 38(10), 235-249. Moulin, M. M., Rodrigues, R., Gonçalves, L. S. A., Sudré, C. P., & Pereira, M. G. (2012). A comparison of RAPD and ISSR markers reveals genetic diversity among sweet potato landraces (Ipomoea batatas (L.) Lam.). Acta Scientiarum Agronomy, 34(2), 139-147. Muhammad Nor, A. A., Zainol, R., Abdullah, R., Jaffar, N. S., Abdul Rasid, M. Z., Laboh, R., Shafawi, N. A., & Abdul Aziz, N. B. (2019). Dissemination pattern of bacterial heart rot (BHR) disease and screening of the disease resistance among commercial pineapple varieties in Malaysia. Malaysian Journal of Microbiology, 15(4), 246-250. Mujaju, C., Sehic, J., Werlemark, G., Garkava-Gustavsson, L., Fatih, M., & Nybom, H. (2010). Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas, 147(1), 142-153. Mujib, A., Banerjee, S., & Ghosh, P. D. (2013). Tissue culture induced variability in some horticultural important ornamentals: chromosomal and molecular basis-a review. Biotechnology, 12(6), 213-224. Muthiah, J. V. L., Shunmugiah, K. P., & Manikandan, R. (2013). Genetic fidelity assessment of encapsulated in vitro tissues of Bacopa monnieri after 6 months of storage by using ISSR and RAPD markers. Turkish Journal of Botany, 37(6), 1008-1017. Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yildiz, M., & Özkan, H. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2), 261-285. Nagaraju, J., Damodar, R. K., Nagaraja, G. M., & Sethuraman, B. N. (2001). Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity, 86(1), 588-597. Nashima, K., Hosaka, F., Terakami, S., Kunihisa, M., Nishitani, C., Moromizato, C., Makoto, T., Shoda, M., Tarora, K., Urasaki, N., & Yamamoto, T. (2020). SSR markers developed using next-generation sequencing technology in pineapple, Ananas comosus (L.) Merr. Breeding Science, 19(1), 1-7. Nazri, A. M., & Pebrian, D. E. (2017). Analysis of energy consumption in pineapple cultivation in Malaysia: a case study. Pertanika Journal Science and Technology, 25(1), 17-28. Ng, W. L., & Tan, S. G. (2015). Inter-simple sequence repeat (ISSR) markers: are we doing it right. Akademi Sains Malaysia Science Journal, 9(1), 30-39. Ngezahayo, F., Dong, Y., & Liu, B. (2007). Somaclonal variation at the nucleotide sequence level in rice (Oryza sativa L.) as revealed by RAPD and ISSR markers and by pairwise sequence analysis. Journal of Applied Genetics, 48(1), 329-336. Niemann, S., Pühler, A., Tichy, H. V., Simon, R., & Selbitschka, W. (1997). Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. Journal of Applied Microbiology, 82(4), 477-484. Nkongolo, K. K., Micheal, P., & Demers, T. (2005). Application of ISSR, RAPD, and cytological markers to the certification of Picea mariana, P. glauca and P. engelmannii tress and their putative hybrids. Genome, 48(1), 302-311. Noor Baiti, A. A., Nurul Shamimi, A. G., Rozlaily, Z., & Mohd Zaki, R. (2017). Evaluation of the performance of MD2 pineapple clone on peat soil. Transactions of the Malaysian Society of Plant Physiology, 24(1), 134-138. Norsyuhaida, A. S., Rosimah, J., Noor Baiti, A. A., Fatkhiah, A. M., Azlan, A. M. N., Syahira, N. N., Mustaffa, R., Salehudin, M. R., & Joanna, C. L. Y. (2018). New technology for mass propagation MD2 pineapple planting material in Malaysia. International Journal of Agriculture, Forestry and Plantation, 6(1), 33-36. Nybom, H. (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13(5), 1143-1155. O’Brien, S. J. (1991). Mammalian genome mapping: lessons and prospect. Current Opinion in Genetics & Development, 1(1), 105-111. Ogata, T., Yamanaka, S., Shoda, M., Urasaki, N., & Yamamoto, T. (2016). Current status of tropical fruit breeding and genetics for three tropical fruit species cultivated in Japan: pineapple, mango and papaya. Breeding Science, 66(1), 69-81. Oliveira, J. D. S., Faleiro, F. G., Junqueira, N. T. V., Fonseca, K. G. D., & Araya, S. (2019). Genetic variability of Passiflora spp. based on ISSR and RAPD. Asian Journal of Science and Technology, 10(1), 9375-9378. Osena, G., Nyaboga, E. N., & Amugune, N. O. (2017). Rapid and efficient isolation of high quality DNA from cassava (Manihot esculenta Crantz) suitable for PCR based downstream applications. Annual Research & Review in Biology, 12(2), 1-10. Othman, M. H., Buang, L., & Mohd Khairuzamri, M. S. (2010). Rejuvenating the Malaysian pineapple. Acta Horticulture, 902(1), 39-51. Ovando-Medina, I., Sánchez-Gutiérrez, A., Adriano-Anaya, L., Espinosa-García, F., Núñez�Farfán, J., & Salvador-Figueroa, M. (2011). Genetic diversity in Jatropha curcas populations in the state of Chiapas, Mexico. Diversity, 3(4), 641-659. Panahi, B., & Neghab, M. G. (2013). Genetic characterisation of Iranian safflower (Carthamus tinctorius) using inter simple sequence repeats (ISSR) markers. Physiology and Molecular Biology of Plants, 19(2), 239-243. Parsons, B. J., Newbury, H. J., Jackson, M. T., & Ford-Lloyd, B. V. (1997). Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Molecular Breeding, 3(1), 115-125. Patel, D. M., Fougat, R. S., Sakure, A. A., Kumar, S., Kumar, M., & Mistry, J. G. (2016). Detection of genetic variation in sandalwood using various DNA markers. 3 Biotech, 6(55), 1-11. Pavel, A. B., & Vasile, C. I. (2012). PyElph - a software tool for gel images analysis and phylogenetics. BMC Bioinformatics, 13(9), 1-6. Pérez, G., Yanez, E., Mbogholi, A., Valle, B., Sagarra, F., Yabor, L., Aragón, C., González, J., Isidrón, M., & Lorenzo, J. C. (2012). New pineapple somaclonal variants: P3R5 and Dwarf. American Journal of Plant Sciences, 3(1), 1-11. Peterson, D. G., Boehm, K. S., & Stack, S. M. (1997). Isolation of miligram quantities of nuclear DNA from tomato (Lycopersicon esculentum), a plant containing high levels of polyphenoloc compounds. Plant Molecular Biology Reporter, 15(2), 148-153. Pirkhezri, M. H. M. E. (2010). Genetic diversity in different populations of Matricaria chamomilla L. growing in Southwest of Iran, based on morphological and RAPD markers. Resource Journal of Medicinal Plants, 4(1), 1-13. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The utility of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2(1), 225-238. Prakash, J., Bhattacharyya, S., Chattopadhyay, K., Roy, S., Das, S. P., & Singh, N. P. (2009). PQM-1: A newly developed superior clone of pineapple for northeastern India as evident through phenotype, fruit quality and DNA polymorphism. Scientia Horticulturae, 120(1), 288-291. Prevost, A., & Wilkinson, M. J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98(1), 107-112. Priyadarshani, S. V. G. N., Cai, H., Zhou, Q., Liu, Y., Cheng, Y., Xiong, J., Patson, D. L., Cao, S., Zhao, H., & Qin, Y. (2019). An efficient agrobacterium mediated transformation of pineapple with GFP-Tagged protein allows easy, non-destructive screening of transgenic pineapple plants. Biomolecules, 9(1), 617-629. Purseglove, J. W., & Purseglove, J. W. (1972). Tropical Crops Monocotyledons Vol. I & II Combined.: English Language Book Society & Longman. Quadrana, L. (2020). The contribution of transposable elements to transcriptional novelty in plants: the FLC affair. Transcription, 2020(1), 1-7. Rahman, Z. A., Abbas, H., Othman, A. N., & Sembok, W. Z. W. (2019). Influence of agitation rate on the growth of MD2 pineapple protocorm-like bodies and shoots in liquid shake culture. American Journal of Plant Sciences, 10(1), 1233-1238. Ramakrishnan, M., Antony, C. S., Duraipandiyan, V., Al-Dhabi, N. A., & Ignacimuthu, S. (2015). Using molecular markers to assess the genetic diversity and population structure of finger millet (Eleusine coracana (L.) Gaertn.) from various geographical regions. Genetic Resources and Crop Evolution, 63(2), 361-376. Rameshkumar, R., Pandian, S., Rathinapriya, P., Selvi, C. T., Satish, L., Gowrishankar, S., Leung, D. W., M., & Ramesh, M. (2019). Genetic diversity and phylogenetic relationship of Nilgirianthus ciliatus populations using ISSR and RAPD markers: Implications for conservation of an endemic and vulnerable medicinal plant. Biocatalysis and Agricultural Biotechnology, 18(1), 101072-101079. Rana, M. M., Aycan, M., Takamatsu, T., Kaneko, K., Mitsui, T., & Itoh, K. (2019). Optimized nuclear pellet method for extracting next-generation sequencing quality genomic DNA from fresh leaf tissue. Methods and Protocols, 2(54), 1-11. Rana, S., & Das, A. B. (2016). Assessment of genetic diversity in 48 landraces of Momordica dioica Roxb. ex Willd. from Odisha, India using RAPD and ISSR markers. The Nucleus, 59(2), 107-114. Randhawa, G. J. (2013). Isolation and purification of genomic DNA. [online] Available at file:///C:/Users/User/Downloads/16DrRandhawa_IsolationpurificationofgenomicD NA.pdf. [Assessed on 18 November 2018]. Rawat, S., Joshi, G., Annapurna, D., Arunkumar, A. N., & Karaba, N. N. (2016). Standardization of DNA extraction method form mature dried leaves and ISSR-PCR conditions for Melia dubia Cav.- a fast growing multipurpose tree species. American Journal of Plant Sciences, 7(1), 437-445. Rayar, J. K., Arif, M., & Singh, U. S. (2015). Relative efficiency of RAPD and ISSR markers in assessment of DNA polymorphism and genetic diversity among Psedomonas strains. African Journal of Biotechnology, 14(13), 1097-1106. Raza, S., Farooqi, S., & Mubeen, H. (2015). Role of molecular markers and their significance. American Journal of Pharmacy and Health Research, 3(12), 2321- 3647. Redwan, R. M., Saidin, A., & Kumar, S. V. (2015). Complete chloroplast genome sequence of MD2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae. BMC Plant Biology, 15(1), 916-216. Rodriguez, D., Grajal-Martin, M. J., Isidrón, M., Petit, S., & Hormaza, J. I. (2013). Polymorphic microsatellite markers in pineapple (Ananas comosus (L.) Merrill). Scientia Horticulturae, 156(1), 127-130 Rodriguez, J., Rodriguez, P., González, M. E., & Martinez-Gomez. (2010). Molecular characterisation of Cuban endemism Carica cubensis Solms using random amplified polymorhic DNA (RAPD) markers. Agri Sciences, 1(1), 95-101. Roostika, I., Mariska, I., Khumaida, N., Meranti, J., & Wattimena, G. A. (2016). Indirect organogenesis and somatic embryogenesis of pineapple induced by dichlorophenoxy acetic acid. Journal AgroBiogen, 8(1), 8-18. Rosenberg, N. L. (1987). ATP as an alternative inhibitor of bacterial and endogenous nucleases and its effect on native chromatin compaction. Molecular and Cellular Biochemistry, 76(2), 113-121. Russell, J. R., Fuller, J. D., Macaulay, M., Hatz, B. G., Jahoor, A., Powell, W., & Waugh, R. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics, 95(4), 714-722. Sabara, P., & Vakharia, D. (2018). Genetic diversity study in papaya (Carica papaya L.) cultivars using RAPD and ISSR markers. Indian Journal of Biotechnology, 17(1), 101-109. Saleh, B. (2011). Efficincey of RAPD and ISSR markers in assessing genetic variation in Arthrocnemum macrostachyum (Chenopodiaceae). Brazillian Archives of Biology and Technology, 54(5), 859-866. Sanewski, G. M. (2020). DArTseq molecular markers associated with the spiny-tip leaf margin in pineapple (Ananas comosus L.). Tropical Plant Biology, 13(1), 91-116. Santos, M. D. M., Buso, G. C. S., & Torres, A. C. (2008). Evaluation of genetic variability in micropropagated propagules of ornamental pineapple [Ananas comosus var. bracteatus (Lindley) Coppens and Leal] using RAPD markers. Genetics and Molecular Research, 7(4), 1097-1105. Sarkar, T., Nayak, P., & Chakraborty, R. (2018). Pineapple [Ananas comosus (L.)] product processing techniques and packaging: a review. Institute of Integrative Omics and Applied Biotechnology, 9(4), 6-12. Sarkosh, A., Zamani, Z., Fatahi, R., & Ebadi, A. (2006). RAPD markers reveal polymorpism among some Iranian pomegranate (Punica granatum L.) genotypes. Scientia Horticulture, 111(1), 24-29. Sarwat, M. (2012). ISSR: a reliable and cost-effective technique for detection of DNA polymorphism. In N. Sucher, J. Hennell, & M. Carles (Eds.), Plant DNA fingerprinting and barcoding: methods and protocols (Vol. 862, pp. 103-121). New York: Humana Press. Schlüter, P. M., & Harris, S. A. (2006). Analysis of multilocus fingerprinting data sets containing missing data. Molecular Ecology Notes, 6(1), 569-572. Selamat, M. (1997). Current practices of planting pineapple on tropical peatland areas in humid tropics of Malaysia. Acta Horticulture, 425(1), 109-118. Seyedimoradi, H., & Talebi, R. (2014). Detecting DNA polymorphism and genetic diversity in Lentil (Lens culimaris Medik.) germplasm: comparison ISSR and DAMD marker. Physiology and Molecular Biology of Plants, 20(4), 495-500. Shafawi, A. N., Jamil, R., Aziz, A. N. B., Marzuki, A. F., Noor, M. A. A., Nasarudin, N. S., Mustaffa, R., Radzuan, M. S., & Ying, J. C. L. (2018). New technology for mass propagation MD2 pineapple planting material in Malaysia International Journal of Agriculture, Forestry and Plantation, 6(1), 33-36. Shahzad, A., Sharma, S., Parveen, S., Saeed, T., Shaheen, A., Akhtar, R., & Ahmad, Z. (2017). Historical perspective and basic principles of plant tissue culture. In Plant biotechnology: principles and applications (Abidin, M. Z., Kiran, U. & Artar, P., 2nd ed.), pp. 1-36. Singapore: Springer. Sharmin, A., Hosque, M. E., Haque, M. M., & Khatun, F. (2018). Molecular diversity analysis of some chili (Capsicum spp.) genotypes using SSR markers. American Journal of Plant, 9(3), 368-379. Shaw, R. K., Acharya, L., & Mukherjee, A. K. (2009). Assessment of genetic diversity in a highly valuable medicinal plant Catharanthus roseus using molecular markers. Applied Biochemistry and Biotechnology, 9(1), 52-59. Shukla, R., Sharma, D. C., Pathak, N., & Bajpai, P. (2016). Genomic DNA isolation from high polyphenolic content Grewia asiatica L. leaf without using liquid nitrogen. Iranian Journal of Science and Technology, Transaction A: Science, 42(2), 347-351. Silva, B. D. F. B. D., Souza, E. H. D., Dias, L. E. D. C., Silva, R. L. D., & Souza, F. V. D. (2019). Clonal evaluation and recurrent flowering of ornamental pineapple hybrid for use as miniature potted plant. Revista Ciência Agronômica, 50(4), 625-634. Silva, J. M., Lima, P. R., Souza, F. V., Ledo, C. A., Souza, E. H., Pestana, K. N., & Ferreira, C. F. (2019). Genetic diversity and nonparametric statistics to identify possible ISSR marker association with fiber quality of pineapple. Anais da Academia Brasileira de Ciências, 91(3), 1-13. Singh, S., Reddy, S. K., & Jawali, N. (2012). Genetic diversity analyses of Mungbean (Vigna radiatia (L.) Wilczek) by ISSR. International Journal of Plant Breeding, 6(2), 78- 83. Singh, S. R., Dalal, S., Singh, F., Dhawan, A. K., & Kalia, R. K. (2013). Molecular profiling of Dendrocalamus asper and D. Hamiltoni using RAPD, ISSR and SSR markers�effects of DNA extraction methods on PCR amplification. Indian Forester, 139(11), 969-977. Sinha, S., & Kumar, A. (2017). Evaluation of economical and rapid method of plant DNA extraction for PCR analysis of different crops. Journal of Applied and Natural Science, 9(2), 866-870. Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. Taxon, 11(1), 33-40. Soneji, J. R., Rao, P. S., & Mhatre, M. (2002). Somaclonal variation in micropropagated dormant axillary buds of pineapple (Ananas comosus L. Merr). The Journal of Horticultural Science and Biotechnology, 77(1), 28-32. Souframanien, J., & Gopalakrishna, T. (2004). A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theoretical and Applied Genetics, 109(1), 1687-1693. Souza, C. P. F., Ferreira, C. F., de Souza, E. H., Neto, A. R. S., Marconcini, J. M., da Silva Ledo, C. A., & Souza, F. V. D. (2017). Genetic diversity and ISSR marker association with the quality of pineapple fiber for use in industry. Industrial Crops and Products, 104(1), 263-268. Sudan, J., Raina, M., Singh, R., Mustafiz, A., & Kumari, S. (2017). A modified protocol for high-quality DNA extraction from seeds rich in secondary compounds. Journal of Crop Improvement, 31(5), 637-647. Sugita, N., Ehihara, A., Hosoya, T., Jinbo, U., Kaneko, S., Kurosawa, T., Nakae, M., & Yukawa, T. (2019). Non-destructive DNA extraction from herbarium specimens: a method particularly suitable for plants with small and fragile leaves. Journal of Plant Research, 133(1), 133-141. Suhaimi, M. N. H., & Fatah, F. A. (2019). Profitability of pineapple production (Ananas comosus) among smallholder in Malaysia. International Journal of Recent Technology and Engineering, 8(4), 4201-4207. Sun, G. M., Zhang, X. M., Soler, A., & Marie-Alphonsine, P. A. (2016). Nutritional composition of pineapple (Ananas comosus (L.) Merr.). In Nutritional Composition of Fruit Cultivars (Simmonds, M. S. J. & Preedy, V. R.), pp. 609-637. New York: Academic Press. Tabasum, A., Hameed, A., & Asghar, M. J. (2020). Exploring the genetic divergence in mungbean (Vigna radiata L.) germplasm using multiple molecular marker systems. Molecular Biotechnology, 62(11), 547-556. Taniguichi, G., Sanewski, G. M., Bartholomew, D. P., & Paull, R. E. (2008). Characteristics of the pineapple research Institute of Hawaii hybrids 73-50 and 73-114. Pineapple News, 15(8), 27-33. Taniguichi, G., & Wright, M. (2003). Micro-Lepidoptera, a new pest problem on pineapple in Hawaii. Pineapple News, 10(1), 1-15. Tariq, M., & Paszkowski, J. (2004). DNA and histone methylation in plants. Trends in Genetics, 20(6), 244-251. Thalip, A. A., Tong, P. S., & Ng, C. (2015). The MD2 ‘super sweet’ pineapple (Ananas comosus). UTAR Agriculture Science Journal, 1(4), 15-17. Thormann, C. E., Ferreira, M. E., Camargo, L. E. A., Tivang, J. G., & Osborn, T. C. (1994). Comparison of RFLP and RAPD markers to estimating genetic relationship within and among cruciferous species. Theoretical and Applied Genetics, 88(8), 973-980. Tikendra, L., Amom, T., & Nongdam, P. (2019). Molecular genetic homogeneity assessment of micropropagated Dendrobium moschatum Sw. - A rare medicinal orchid, using RAPD and ISSR markers. Plant Gene, 19(1), 1-11. Tiwari, S., Tomar, R. S., Tripathi, M. K., & Ahuja, A. (2017). Modified protocol for plant genomic DNA isolation. Indian Research Journal of Genetics and Biotechnology, 9(4), 478-485. UNCTAD. (2016). Infocomm commodity profile: pineapple. UNCTAD. Valleser, V. (2018). Plant age and rate of flower inducer affects flower initiation of MD2 pineapple (Ananas comosus L.). International Journal of Research and Review, 5(4), 27-32. Varma, A., Padh, H., & Shrivastava, N. (2007). Plant genomic DNA isolation: an art or a science. Biotechnology Journal, 2(1), 386-392. Verma, H., Borah, J. L., & Sarma, R. N. (2019). Variability assessment for root and drought tolerance traits and genetic diversity analysis of rice germplasm using SSR markers. Scientific reports, 9(1), 1-19. Verma, K. S., ul Haq, S., Kachhwaha, S., & Kothari, S. L. (2017). RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: a unique source of germplasm highly adapted to drought and high temperature stress. 3 Biotech, 7(1), 288-312. Viana, J. P., Borges, A. N., Lopes, A. C., Gomes, R. L., Britto, F. B., Lima, P. S., & Valente, S. E. (2015). Comparison of eight methods of genomic DNA extraction from babassu. Genetics and Molecular Research, 14(4), 18003-18008. Wacksman, J. T. (1997). DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutation Research, 375, 1-8. Wakasa, K. (1977). Use of tissue culture for propagation and mutant induction in Ananas comosus. Division of Genetics National Institute of Agriculture Sciences. Annual Report, 2(1), 42-49. Wakasa, K. (1979). Variation in the plants differentiated from the tissue culture of pineapple. Japanese Journal of Breeding, 29(1), 13-22. Wang, J. S., He, J. H., Chen, H. R., Chen, Y. Y., & Qiao, F. (2017). Genetic diversity in various accessions of pineapple [Ananas comosus (L.) Merr.] using ISSR and SSR markers. Biochemical genetics, 55(5-6), 347-336. Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531-6535. Yu, G., Hatta, A., Periyannan, S., Lagudah, E., & Wulf, B. B. (2017). Isolation of wheat genomic DNA for gene mapping and cloning. In Wheat rust diseases: methods and protocols, methods in molecular biology (Periyannan, S), pp. 207-213. New York: Humana Press. Zarini, H. N., Jafari, H., Ramandi, H. D., Bolandi, A. R., & Karismishahri, M. R. (2019). A comparative assessment of DNA fingerprinting assays of ISSR and RAPD markers for molecular diversity of Saffron and other Crocus spp. in Iran. The Nucleus, 62(1), 39-50. Zhang, H., Lang, Z., & Zhu, J. K. (2018). Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 19(8), 489-506. Zhang, H., Sun, W., Sun, G., Liu, S., Li, Y., Wu, Q., & Wei, Y. (2016). Phenological growth stages of pineapple (Ananas comosus) according to the extended Biologische Bundesantalt, Bundessortenamt and Chemische Industrial scale. Annals of Applied Biology, 169(1), 311-318. Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2), 176-783. Zigene, Z. D., Asfaw, B. T., & Bitima, T. D. (2019). Optimizing DNA isolation protocol for rosemary (Rosemarinus officinalis L) accessions. African Journal of Biotechnology, 18(30), 895-900. Zilberman, D. (2017). An evolutionary case for functional gene body methylation in plants and animals. Genome Biology, 18(1), 1-3. |