Study of Coconut Biodiesel Transesterification Optimum Parameters to Investigate Diesel Engine Performance with Exhaust Gas Emission Analysis

Biodiesel is one of the renewable alternative fuels, which can be obtained from vegetable oils or animal fats. Biodiesel’s global demand has increased significantly over the last decade. The continuous rise in demand requires new technology to produce biodiesel in a more efficient and environmental...

Full description

Saved in:
Bibliographic Details
Main Author: Abdussalam Khan Bin, Mustafa Khan
Format: Thesis
Language:English
English
English
Published: 2023
Subjects:
Online Access:http://ir.unimas.my/id/eprint/43071/3/Abdussalam%20_dsva.pdf
http://ir.unimas.my/id/eprint/43071/4/Thesis%20master_Abdussalam%20-%2024%20pages.pdf
http://ir.unimas.my/id/eprint/43071/5/Thesis%20master_Abdussalam.ftext.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-unimas-ir.43071
record_format uketd_dc
institution Universiti Malaysia Sarawak
collection UNIMAS Institutional Repository
language English
English
English
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Abdussalam Khan Bin, Mustafa Khan
Study of Coconut Biodiesel Transesterification Optimum Parameters to Investigate Diesel Engine Performance with Exhaust Gas Emission Analysis
description Biodiesel is one of the renewable alternative fuels, which can be obtained from vegetable oils or animal fats. Biodiesel’s global demand has increased significantly over the last decade. The continuous rise in demand requires new technology to produce biodiesel in a more efficient and environmental way. Current biodiesel technology mainly produces biodiesel from crop oils that are commonly edible. Edible oil such as crude coconut oil (COCO) is used in this study. Titration method was performed to indicate crude coconut oil free fatty acid (FFA) value. FFA value of COCO determines which method of transesterification to be performed. This study focuses on acid/base catalysed transesterification using homogenous catalyst to produce biodiesel (fatty acid methyl ester) (FAME) from COCO. The optimum parameters of coconut biodiesel (CB) production were studied as well as the physicochemical properties, engine performance and emission analysis. Based on titration performed, FFA value was high with 14.82%. The optimum condition for producing coconut biodiesel were determined to be 0.01:1 v: v catalyst to oil ratio, 0.6:1 v: v methanol to oil ratio, with one hour reaction time at 55°C reaction temperature in acid catalysed esterification process. Whereas for base catalysed transesterification process, the optimum parameters were 0.015:1 w/w catalyst to oil ratio, 6:1 w/w methanol to oil ratio with two (2) hours reaction temperature at 60°C. The optimum condition of acid/base catalysed transesterification produces 98% of ester yield and 95% of biodiesel yield. The engine performance result shows that the engine power output and the mechanical efficiency dropped compared to conventional diesel. On the other hand, the specific fuel consumption increases with the increasing biodiesel blend. For emission analysis, the hydrocarbon and carbon monoxide decrease with the increasing biodiesel blend whereas the nitrogen oxides increased.
format Thesis
qualification_level Master's degree
author Abdussalam Khan Bin, Mustafa Khan
author_facet Abdussalam Khan Bin, Mustafa Khan
author_sort Abdussalam Khan Bin, Mustafa Khan
title Study of Coconut Biodiesel Transesterification Optimum Parameters to Investigate Diesel Engine Performance with Exhaust Gas Emission Analysis
title_short Study of Coconut Biodiesel Transesterification Optimum Parameters to Investigate Diesel Engine Performance with Exhaust Gas Emission Analysis
title_full Study of Coconut Biodiesel Transesterification Optimum Parameters to Investigate Diesel Engine Performance with Exhaust Gas Emission Analysis
title_fullStr Study of Coconut Biodiesel Transesterification Optimum Parameters to Investigate Diesel Engine Performance with Exhaust Gas Emission Analysis
title_full_unstemmed Study of Coconut Biodiesel Transesterification Optimum Parameters to Investigate Diesel Engine Performance with Exhaust Gas Emission Analysis
title_sort study of coconut biodiesel transesterification optimum parameters to investigate diesel engine performance with exhaust gas emission analysis
granting_institution Universiti Malaysia Sarawak
granting_department Faculty of Engineering
publishDate 2023
url http://ir.unimas.my/id/eprint/43071/3/Abdussalam%20_dsva.pdf
http://ir.unimas.my/id/eprint/43071/4/Thesis%20master_Abdussalam%20-%2024%20pages.pdf
http://ir.unimas.my/id/eprint/43071/5/Thesis%20master_Abdussalam.ftext.pdf
_version_ 1783728548359438336
spelling my-unimas-ir.430712023-10-19T01:53:19Z Study of Coconut Biodiesel Transesterification Optimum Parameters to Investigate Diesel Engine Performance with Exhaust Gas Emission Analysis 2023-09-20 Abdussalam Khan Bin, Mustafa Khan TJ Mechanical engineering and machinery Biodiesel is one of the renewable alternative fuels, which can be obtained from vegetable oils or animal fats. Biodiesel’s global demand has increased significantly over the last decade. The continuous rise in demand requires new technology to produce biodiesel in a more efficient and environmental way. Current biodiesel technology mainly produces biodiesel from crop oils that are commonly edible. Edible oil such as crude coconut oil (COCO) is used in this study. Titration method was performed to indicate crude coconut oil free fatty acid (FFA) value. FFA value of COCO determines which method of transesterification to be performed. This study focuses on acid/base catalysed transesterification using homogenous catalyst to produce biodiesel (fatty acid methyl ester) (FAME) from COCO. The optimum parameters of coconut biodiesel (CB) production were studied as well as the physicochemical properties, engine performance and emission analysis. Based on titration performed, FFA value was high with 14.82%. The optimum condition for producing coconut biodiesel were determined to be 0.01:1 v: v catalyst to oil ratio, 0.6:1 v: v methanol to oil ratio, with one hour reaction time at 55°C reaction temperature in acid catalysed esterification process. Whereas for base catalysed transesterification process, the optimum parameters were 0.015:1 w/w catalyst to oil ratio, 6:1 w/w methanol to oil ratio with two (2) hours reaction temperature at 60°C. The optimum condition of acid/base catalysed transesterification produces 98% of ester yield and 95% of biodiesel yield. The engine performance result shows that the engine power output and the mechanical efficiency dropped compared to conventional diesel. On the other hand, the specific fuel consumption increases with the increasing biodiesel blend. For emission analysis, the hydrocarbon and carbon monoxide decrease with the increasing biodiesel blend whereas the nitrogen oxides increased. Universiti Malaysia Sarawak 2023-09 Thesis http://ir.unimas.my/id/eprint/43071/ http://ir.unimas.my/id/eprint/43071/3/Abdussalam%20_dsva.pdf text en staffonly http://ir.unimas.my/id/eprint/43071/4/Thesis%20master_Abdussalam%20-%2024%20pages.pdf text en public http://ir.unimas.my/id/eprint/43071/5/Thesis%20master_Abdussalam.ftext.pdf text en validuser masters Universiti Malaysia Sarawak Faculty of Engineering Abbaszaadeh, A., Ghobadian, B., Omidkhah, M. R., & Najafi, G. (2012). Current biodiesel production technologies: A comparative review. Energy Conversion and Management, 63, 138–148. https://doi.org/10.1016/j.enconman.2012.02.027. Abdalla, I. E. (2018). Experimental studies for the thermo-physiochemical properties of Biodiesel and its blends and the performance of such fuels in a Compression Ignition Engine. Fuel, 212, 638–655. https://doi.org/10.1016/j.fuel.2017.10.064. Aburto, J., Román, S., González, A. R., & Vázquez, M. (2019). Biodiesel production from crude coconut oil using alkali-catalyzed transesterification. Journal of Environmental Management, 249, 109340. doi:10.1016/j.jenvman.2019.109340. Aditiya, H. B., Theofany, H. C., & Yheni, M. (2019). High-pressurizing green algae in third generation bioethanol production. Journal of Physics: Conference Series, 1402(4). https://doi.org/10.1088/1742-6596/1402/4/044045. Aghbashlo, M., Peng, W., Tabatabaei, M., Kalogirou, S. A., Soltanian, S., Hosseinzadeh-Bandbafha, H., Mahian, O., & Lam, S. S. (2021). Machine learning technology in biodiesel research: A review. Progress in Energy and Combustion Science, 85, 100904. https://doi.org/10.1016/j.pecs.2021.100904. Akhihiero, E. T., Oghenejoboh, K. M., & Umukoro, P. O. (2013). Effects of Process Variables on Transesterification Reaction of Jatropha Curcas Seed Oil for the Production of Biodiesel. International Journal of Emerging Technology and Advanced Engineering, 3(6), 388–393. Ali, O. M., Mamat, R., Abdullah, N. R., & Abdullah, A. A. (2015). Analysis of blended fuel properties and engine performance with palm biodiesel-diesel blended fuel. Renewable Energy, 86, 59–67. https://doi.org/10.1016/j.renene.2015.07.103. 83 Alptekin, E., & Canakci, M. (2010). Optimization of Biodiesel Production from Sunflower Oil. Energy Conversion and Management, 51(7), 1378-1384. Al-Zuhair, S., Al-Fadel, B., Al-Salem, S., & Daud, W. R. (2015). Optimization of biodiesel production process from crude Jatropha oil using artificial neural network modeling. Journal of Cleaner Production, 86, 478-483. doi:10.1016/j.jclepro.2014.08.045. American Standards for Testing of Materials. (2014). ASTM D974-14 Standard Test Method for Acid and Base Number by Color-Indicator Titration. West Conshohocken, PA: ASTM. Ashraful, A. M., Masjuki, H. H., Kalam, M. A., Rizwanul Fattah, I. M., Imtenan, S., Shahir, S. A., & Mobarak, H. M. (2014). Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review. Energy Conversion and Management, 80, 202–228. https://doi.org/10.1016/j.enconman.2014.01.037. Atadashi, I. M., Aroua, M. K., & Abdul Aziz, A. R. (2011). The effects of filtration process on the production of biodiesel from crude palm oil. Fuel, 90(11), 3335-3338. doi:10.1016/j.fuel.2011.06.044. Awolu, O. O., & Layokun, S. K. (2013). Optimization of two-step transesterification production of biodiesel from neem (Azadirachta indica) oil. International Journal of Energy and Environmental Engineering, 4(1), 39. https://doi.org/10.1186/2251-6832-4-39. Aydın, S. (2020). Comprehensive analysis of combustion, performance and emissions of power generator diesel engine fueled with different source of biodiesel blends. Energy, 205, 118074. https://doi.org/10.1016/j.energy.2020.118074. Ayetor, G. K., Sunnu, A., & Parbey, J. (2015). Effect of biodiesel production parameters on 84 viscosity and yield of methyl esters: Jatropha curcas, Elaeis guineensis and Cocos nucifera. Alexandria Engineering Journal, 54(4), 1285–1290. https://doi.org/10.1016/j.aej.2015.09.011. Bambase, M. E., Almazan, R. A. R., Demafelis, R. B., Sobremisana, M. J., & Dizon, L. S. H. (2021). Biodiesel production from refined coconut oil using hydroxide-impregnated calcium oxide by cosolvent method. Renewable Energy, 163, 571–578. https://doi.org/10.1016/j.renene.2020.08.115. Baskar, G., Aberna Ebenezer Selvakumari, I., & Aiswarya, R. (2018). Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst. Bioresource Technology, 250, 793–798. https://doi.org/10.1016/j.biortech.2017.12.010. Bello, E. I., Adekanbi, I. T., & Akinbode, F. O. (2015). Production and Characterization of Coconut (Cocos Nucifera) Oil and Its Methyl Ester. European Journal of Engineering and Technology, 3(3), 25–35. www.idpublications.org. Bibin, C., Gopinath, S., Aravindraj, R., Devaraj, A., Gokula Krishnan, S., & Jeevaananthan, J. K. S. (2020). The production of biodiesel from castor oil as a potential feedstock and its usage in compression ignition Engine: A comprehensive review. Materials Today: Proceedings, 33, 84–92. https://doi.org/10.1016/j.matpr.2020.03.205. Boey, P.-L., Maniam, G. P., & Hamid, S. A. (2011). Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: A review. Chemical Engineering Journal, 168(1), 15–22. https://doi.org/10.1016/j.cej.2011.01.009. Boonmee, K., Chuntranuluck, S., Punsuvon, V., & Silayoi, P. (2010). Optimization of Biodiesel Production from Jatropha Oil (Jatropha curcas L.) using Response Surface Methodology. Kasetsart J. (Nat. Sci.), 44, 290–299. Bouaid, A., Boulifi, N. El, Martinez, M., & Aracil, J. (2012). Optimization of a two-step process for biodiesel production from Jatropha curcas crude oil. International Journal of Low-Carbon Technologies, 7(4), 331–337. https://doi.org/10.1093/ijlct/ctr047. British Standard Institution. (2010). Bs En 14214:2008+a1:2009 Automotive fuels — Fatty acid methyl esters (FAME) for diesel engines — Requirements and test methods. London: BSI. Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., & Trongyong, S. (2013). Calcium oxide derived from waste shells of mussel, cockle, and scallop as the heterogeneous catalyst for biodiesel production. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/460923. Buyukkaya, E. (2010). Effects of biodiesel on a di diesel engine performance, emission and combustion characteristics. Fuel, 89(10), 3099–3105. https://doi.org/10.1016/j.fuel.2010.05.034. Can, Ö. (2014). Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture. Energy Conversion and Management, 87(2014), 676–686. https://doi.org/10.1016/j.enconman.2014.07.066. Chinnamma, M., Bhasker, S., Madhav, H., Devasia, R. M., Shashidharan, A., Pillai, B. C., & Thevannoor, P. (2015). Production of coconut methyl ester (CME) and glycerol from coconut (Cocos nucifera) oil and the functional feasibility of CME as biofuel in diesel engine. Fuel, 140, 4–9. https://doi.org/10.1016/j.fuel.2014.09.057. Chong, C. T., Loe, T. Y., Wong, K. Y., Ashokkumar, V., Lam, S. S., Chong, W. T., Borrion, A., Tian, B., & Ng, J. H. (2021). Biodiesel sustainability: The global impact of potential biodiesel production on the energy–water–food (EWF) nexus. Environmental Technology and Innovation, 22, 101408. https://doi.org/10.1016/j.eti.2021.101408. Dhar, A., & Agarwal, A. K. (2014). Effect of Karanja biodiesel blend on engine wear in a 86 diesel engine. Fuel, 134, 81–89. https://doi.org/10.1016/j.fuel.2014.05.039. Di Pietro, M. E., Mannu, A., & Mele, A. (2020). NMR determination of free fatty acids in vegetable oils. Processes, 8(410). https://doi.org/10.3390/PR8040410. Dinesha, P., & Mohanan, P. (2018). Combined effect of oxygen enrichment and exhaust gas recirculation on the performance and emissions of a diesel engine fueled with biofuel blends. Biofuels, 9(1), 45–51. https://doi.org/10.1080/17597269.2016.1256551. Demirbas, A. (2009). Progress and Recent Trends in Biodiesel Fuels. Energy Conversion and Management, 50(1), 14-34. https://doi.org/10.1016/j.enconman.2008.09.001. Chen, Y., Han, B., & Wang, F. (2019). Biodiesel Production from Waste Cooking Oil Using an Efficient Immobilized Lipase. Bioresource Technology, 101(23), 9523-9581. https://doi.org/10.1016/j.jclepro.2019.119166. Emiroğlu, A. O., Keskin, A., & Şen, M. (2018). Experimental investigation of the effects of turkey rendering fat biodiesel on combustion, performance and exhaust emissions of a diesel engine. Fuel, 216, 266–273. https://doi.org/10.1016/j.fuel.2017.12.026. Esmaeili, H., & Foroutan, R. (2018). Optimization of biodiesel production from goat tallow using alkaline catalysts and combining them with diesel. Chemistry and Chemical Technology, 12(1), 120–126. https://doi.org/10.23939/chcht12.01.120. Espinoza, A., Bautista, S., Narváez, P. C., Alfaro, M., & Camargo, M. (2017). Sustainability assessment to support governmental biodiesel policy in Colombia: A system dynamics model. Journal of Cleaner Production, 141, 1145–1163. https://doi.org/10.1016/j.jclepro.2016.09.168. Farobie, O., & Matsumura, Y. (2017). State of the art of biodiesel production under supercritical conditions. Progress in Energy and Combustion Science, 63, 173–203. https://doi.org/10.1016/j.pecs.2017.08.001. 87 Farooq, M., & Ramli, A. (2015). Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renewable Energy, 76, 362–368. https://doi.org/10.1016/j.renene.2014.11.042. Fattah, I. M. R., Masjuki, H. H., Kalam, M. A., Mofijur, M., & Abedin, M. J. (2014). Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Conversion and Management, 79, 265–272. https://doi.org/10.1016/j.enconman.2013.12.024. Fattah, I. M. R., Ong, H. C., Mahlia, T. M. I., Mofijur, M., Silitonga, A. S., Ashrafur Rahman, S. M., & Ahmad, A. (2020). State of the Art of Catalysts for Biodiesel Production. Frontiers in Energy Research, 8(June), 1–17. https://doi.org/10.3389/fenrg.2020.00101. Fukuda, H., Kondo, A., & Noda, H. (2001). Biodiesel Fuel Production by Transesterification of Oils. Journal of Bioscience and Bioengineering, 92(5), 405-416. Gebremariam, S. N., & Marchetti, J. M. (2018). Economics of biodiesel production: Review. Energy Conversion and Management, 168(May), 74–84. https://doi.org/10.1016/j.enconman.2018.05.002. Ghorbani, A., Bazooyar, B., Shariati, A., Jokar, S. M., Ajami, H., & Naderi, A. (2011). A comparative study of combustion performance and emission of biodiesel blends and diesel in an experimental boiler. Applied Energy, 88(12), 4725–4732. https://doi.org/10.1016/j.apenergy.2011.06.016. Goyal, P., Sharma, M. P., & Jain, S. (2013). Optimization of transesterification of Jatropha curcas oil to biodiesel using response surface methodology and its adulteration with kerosene. Journal of Materials and Environmental Science, 4(2), 277–284. Habibullah, M., Rizwanul Fattah, I. M., Masjuki, H. H., & Kalam, M. A. (2015). Effects of palm-coconut biodiesel blends on the performance and emission of a single-cylinder 88 diesel engine. Energy and Fuels, 29(2), 734–743. https://doi.org/10.1021/ef502495n. Hasan, M. M., & Rahman, M. M. (2017). Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renewable and Sustainable Energy Reviews, 74(February), 938–948. https://doi.org/10.1016/j.rser.2017.03.045. Hernández-Cruz, M. C., Meza-Gordillo, R., Torrestiana-Sánchez, B., Rosales-Quintero, A., Ventura-Canseco, L. M. C., & Castañón-Gonzáles, J. H. (2016). Chicken fat and biodiesel viscosity modification with additives for the formulation of biolubricants. Fuel, 198, 42–48. https://doi.org/10.1016/j.fuel.2016.12.039. Hossain, M. A., Chowdhury, S. M., Rekhu, Y., Faraz, K. S., & Islam, M. U. (2012). Biodiesel from coconut oil: a renewable alternative fuel for diesel engine. World Academy of Science, Engineering and Technology, 68(8), 1289–1293. Islam, S., Ahmed, A. S., Islam, A., Aziz, S. A., Xian, L. C., & Mridha, M. (2014). Castor Biodiesel. Journal of Chemistry, 2014, 1–8. https://doi.org/10.1155/2014/451526 IEA. (2021). Global Energy Review 2021. International Energy Agency, France. Kabir, I., Yacob, M., & Radam, A. (2014). Households’ Awareness, Attitudes and Practices Regarding Waste Cooking Oil Recycling in Petaling, Malaysia. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(10), 45–51. https://doi.org/10.9790/2402-081034551. Kalam, M. A., Masjuki, H. H., Jayed, M. H., & Liaquat, A. M. (2011). Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil. Energy, 36(1), 397–402. https://doi.org/10.1016/j.energy.2010.10.026. Kasirajan, R. (2021). Biodiesel production by two step process from an energy source of Chrysophyllum albidum oil using homogeneous catalyst. South African Journal of 89 Chemical Engineering, 37, 161–166. https://doi.org/10.1016/j.sajce.2021.05.011. Kegl, B. (2011). Influence of biodiesel on engine combustion and emission characteristics. Applied Energy, 88(5), 1803–1812. https://doi.org/10.1016/j.apenergy.2010.12.007. Koh, M. Y., & Tinia, T. I. (2011). A review of biodiesel production from Jatropha curcas L. oil. Renewable and Sustainable Energy Reviews, 15(5), 2240–2251. https://doi.org/10.1016/j.rser.2011.02.013. Knothe, G. (2010). Biodiesel and renewable diesel: A comparison. Progress in Energy and Combustion Science, 36(3), 364-373. Kumar, A., Kim, D., Omidvarborna, H., & Kuppili, S. K. (2014). Combustion Chemistry of Biodiesel for the Use in Urban Transport Buses : Experiment and Modeling., California : Mineta National Transit Research Consortium. Kumar, G., Kumar, D., Singh, S., Kothari, S., Bhatt, S., & Singh, C. P. (2010). Continuous low cost transesterification process for the production of coconut biodiesel. Energies, 3(1), 43–56. https://doi.org/10.3390/en3010043. Kumar, K. J. S., & Raju, A. N. (2021). Performance and Emission Characteristics of Compressed Ignition Engine by Using Non-edible Coconut Biodiesel. Lecture Notes in Mechanical Engineering, January, 663–671. https://doi.org/10.1007/978-981-15-4308-1_52. Kumar, P., Sharma, M. P., & Dwivedi, G. (2015). Impact of ternary blends of biodiesel on diesel engine performance. Egyptian Journal of Petroleum, 25(2), 255–261. https://doi.org/10.1016/j.ejpe.2015.06.010. Liaquat, A. M., Masjuki, H. H., Kalam, M. A., Fattah, I. M. R., Hazrat, M. A., Varman, M., Mofijur, M., & Shahabuddin, M. (2013). Effect of coconut biodiesel blended fuels on engine performance and emission characteristics. Procedia Engineering, 56, 583–590. 90 https://doi.org/10.1016/j.proeng.2013.03.163. Ling, J. S. J., Tan, Y. H., Mubarak, N. M., Kansedo, J., Saptoro, A., & Nolasco-Hipolito, C. (2019). A review of heterogeneous calcium oxide based catalyst from waste for biodiesel synthesis. SN Applied Sciences, 1(8). https://doi.org/10.1007/s42452-019-0843-3. Llamas, A., García-Martínez, M. J., Al-Lal, A. M., Canoira, L., & Lapuerta, M. (2012). Biokerosene from coconut and palm kernel oils: Production and properties of their blends with fossil kerosene. Fuel, 102, 483–490. https://doi.org/10.1016/j.fuel.2012.06.108. Lugo-Méndez, H., Sánchez-Domínguez, M., Sales-Cruz, M., Olivares-Hernández, R., Lugo-Leyte, R., & Torres-Aldaco, A. (2021). Synthesis of biodiesel from coconut oil and characterization of its blends. Fuel, 295(December), 1200595. https://doi.org/10.1016/j.fuel.2021.120595. Mahesh, S. E., Ramanathan, A., Begum, K. M. M. S., & Narayanan, A. (2015). Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst. Energy Conversion and Management, 91, 442–450. https://doi.org/10.1016/j.enconman.2014.12.031. Mahlia, T. M. I., Syazmi, Z. A. H. S., Mofijur, M., Abas, A. E. P., Bilad, M. R., Ong, H. C., & Silitonga, A. S. (2020). Patent landscape review on biodiesel production: Technology updates. Renewable and Sustainable Energy Reviews, 118(April), 109526. https://doi.org/10.1016/j.rser.2019.109526. Mahmudul, H. M., Hagos, F. Y., Mamat, R., Adam, A. A., Ishak, W. F. W., & Alenezi, R. (2017). Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renewable and Sustainable Energy Reviews, 72(April), 91 497–509. https://doi.org/10.1016/j.rser.2017.01.001. Malik, M. S. A., Mohamad Shaiful, A. I., Mohd Ismail, M. S., Mohd Jaafar, M. N., & Sahar, A. M. (2017). Combustion and emission characteristics of coconut-based biodiesel in a liquid fuel burner. Energies, 10(4), 1–12. https://doi.org/10.3390/en10040458. Man, X. J., Cheung, C. S., Ning, Z., Wei, L., & Huang, Z. H. (2016). Influence of engine load and speed on regulated and unregulated emissions of a diesel engine fueled with diesel fuel blended with waste cooking oil biodiesel. Fuel, 180, 41–49. https://doi.org/10.1016/j.fuel.2016.04.007. Marina, A. M., Che Man, Y. B., & Amin, I. (2009). Virgin Coconut Oil: Emerging Functional Food Oil. Trends in Food Science & Technology, 20(10), 481-487. Martinot, E., & Sawin, J. L. (2009). Renewables: Global Status Report: 2007. Renewable Energy Policy Network for the 21st Century. [PDF] Available at : //www. ren21. net/pdf/RE2007_Global_Status_Report. pdf [Accessed on 21st February 2022]. Marchetti, J. M., Miguel, V. U., Errazu, A. F., & Marchetti, J. M. (2007). Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews, 11(6), 1300-1311. Mašek, O. (2016). Biochar in thermal and thermochemical biorefineries-production of biochar as a coproduct. Handbook of Biofuels Production: Processes and Technologies: Second Edition, 655–671. https://doi.org/10.1016/B978-0-08-100455-5.00021-7. Mat Yasin, M. H., Mamat, R., Najafi, G., Ali, O. M., Yusop, A. F., & Ali, M. H. (2017). Potentials of palm oil as new feedstock oil for a global alternative fuel: A review. Renewable and Sustainable Energy Reviews, 79(May), 1034–1049. https://doi.org/10.1016/j.rser.2017.05.186. Meher, L. C., Vidya Sagar, D., & Naik, S. N. (2006). Technical aspects of biodiesel 92 production by transesterification - A review. Renewable and Sustainable Energy Reviews, 10(3), 248–268. https://doi.org/10.1016/j.rser.2004.09.002. Mittelbach, M., & Remschmidt, C. (2004). Biodiesel: The comprehensive handbook, Austria : Martin Mittelbach. Mofijur, M. ;, Masjuki, H. H., Kalam, M. A., Atabani, A. E., Fattah, I. M. R., & Mobarak, H. M. (2014). Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Industrial Crops and Products, 53, 78–84. https://doi.org/10.1016/j.indcrop.2013.12.011. Mofijur, M., Masjuki, H. H., Kalam, M. A., & Atabani, A. E. (2013). Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy, 55, 879–887. https://doi.org/10.1016/j.energy.2013.02.059. Mofijur, M., Masjuki, H. H., Kalam, M. A., Atabani, A. E., Arbab, M. I., Cheng, S. F., & Gouk, S. W. (2014). Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine. Energy Conversion and Management, 82, 169–176. https://doi.org/10.1016/j.enconman.2014.02.073. Mohiddin, M. N. Bin, Tan, Y. H., Seow, Y. X., Kansedo, J., Mubarak, N. M., Abdullah, M. O., Chan, Y. S., & Khalid, M. (2021). Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 98, 60–81. https://doi.org/10.1016/j.jiec.2021.03.036. Mumtaz, M. W., Hamid, A., Arshad, M. S., & Adnan, A. S. (2011). An Insight into the Brimming Potential of Coconut Oil as an Economically Viable Source for Biodiesel - A Review. Journal of Environmental Management, 92(4), 1339-1345. Najafi, G. (2018). Diesel engine combustion characteristics using nano-particles in 93 biodiesel-diesel blends. Fuel, 212(July 2017), 668–678. https://doi.org/10.1016/j.fuel.2017.10.001. Nagarajan, V., & Gunasekaran, M. (2018). Optimization of biodiesel production from crude rubber seed oil using activated eggshell catalyst in a continuous packed-bed reactor. Energy Conversion and Management, 167, 275-285. doi:10.1016/j.enconman.2018.04.019. Nakpong, P., & Wootthikanokkhan, S. (2010). High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renewable Energy, 35(8), 1682–1687. https://doi.org/10.1016/j.renene.2009.12.004. Nalgundwar, A., Paul, B., & Sharma, S. K. (2016). Comparison of performance and emissions characteristics of di CI engine fueled with dual biodiesel blends of palm and jatropha. Fuel, 173(January), 172–179. https://doi.org/10.1016/j.fuel.2016.01.022. Nevin, K. G., & Rajamohan, T. (2004). Beneficial Effects of Virgin Coconut Oil on Lipid Parameters and In Vitro LDL Oxidation. Clinical Biochemistry, 37(9), 830-835. Ong, H. C., Milano, J., Silitonga, A. S., Hassan, M. H., Shamsuddin, A. H., Wang, C. T., Indra Mahlia, T. M., Siswantoro, J., Kusumo, F., & Sutrisno, J. (2019). Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: Optimization and characterization. Journal of Cleaner Production, 219, 183–198. https://doi.org/10.1016/j.jclepro.2019.02.048. Opoku-Boahen, Y., Azumah, S., Apanyin, S., Novick, B. D., & Wubah, D. (2012). The quality and infrared determination of trans-fatty acid contents in some edible vegetable oils. African Journal of Food Science and Technology, 3(6), 142–148. Özçelik, A. E., Aydoʇan, H., & Acaroʇlu, M. (2015). Determining the performance, emission and combustion properties of camelina biodiesel blends. Energy Conversion and 94 Management, 96, 47–57. https://doi.org/10.1016/j.enconman.2015.02.024. Öztürk, E. (2015). Performance, emissions, combustion and injection characteristics of a diesel engine fuelled with canola oil-hazelnut soapstock biodiesel mixture. Fuel Processing Technology, 129, 183–191. https://doi.org/10.1016/j.fuproc.2014.09.016. Pathak, S. (2015). Acid catalyzed transesterification. Journal of Chemical and Pharmaceutical Research, 7(3), 1780–1786. http://dx.doi.org/10.1016/j.fuproc.2015.01.005. Paudel, S. R., Banjara, S. P., Choi, O. K., Park, K. Y., Kim, Y. M., & Lee, J. W. (2017). Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresource Technology, 245, 1194–1205. https://doi.org/10.1016/j.biortech.2017.08.182. Pereira, R. G., Tulcan, O. E. P., Fellows, C. E., Da Silva, I. M., Do Espirito Santo Filho, D. M., De Jesus Lameira, V., & Quelhas, O. L. G. (2014). Energy generation using coconut biodiesel and coconut oil in a stationary engine. International Journal of Oil, Gas and Coal Technology, 7(4), 450–453. https://doi.org/10.1504/IJOGCT.2014.062165. Pullen, J., & Saeed, K. (2014). Factors affecting biodiesel engine performance and exhaust emissions - Part I: Review. Energy, 72(March), 1–16. https://doi.org/10.1016/j.energy.2014.04.015. Raghavan, K. (2010). Biofuels From Coconuts. August 2010. http://www.fact-foundation.com,[ Accessed on 15 March 2022]. Raheem, I., Mohiddin, M. N. Bin, Tan, Y. H., Kansedo, J., Mubarak, N. M., Abdullah, M. O., & Ibrahim, M. L. (2020). A review on influence of reactor technologies and kinetic studies for biodiesel application. Journal of Industrial and Engineering Chemistry, 91, 54–68. https://doi.org/10.1016/j.jiec.2020.08.024. 95 Rahman, M. M., Rasul, M. G., Hassan, N. M. S., Azad, A. K., & Uddin, M. N. (2017). Effect of small proportion of butanol additive on the performance, emission, and combustion of Australian native first- and second-generation biodiesel in a diesel engine. Environmental Science and Pollution Research, 24(28), 22402–22413. https://doi.org/10.1007/s11356-017-9920-6. Rao, K. S., Mutyalu, K. B., & Ramakrishna, A. (2015). International Journal of Modern Trends in Engineering and Research Diesel Engine Performance and Emission Characteristics with Chicken Fat Biodiesel Compared to other Biodiesels. International Journal of Modern Trends in Engineering and Research, 2(7), 1638–1647. Reddy, A. N. R., Ahamed, A. S., Islam, M. D., & Hamdan, S. (2015). Methanolysis of Crude Jatropha Oil using Heterogeneous Catalyst from the Seashells and Eggshells as Green Biodiesel. ASEAN Journal on Science and Technology for Development, 32(1), 16–30. https://doi.org/10.29037/ajstd.9. Reddy, A. N. R., Saleh, A. A., Islam, M. S., & Hamdan, S. (2017a). Active Razor Shell CaO Catalyst Synthesis for Jatropha Methyl Ester Production via Optimized Two-Step Transesterification. Journal of Chemistry, 2017(1). https://doi.org/10.1155/2017/1489218 Reddy, A. N. R., Saleh, A. A., Islam, M. S., & Hamdan, S. (2017b). Optimization of transesterification parameters for optimal biodiesel yield from crude jatropha oil using a newly synthesized seashell catalyst. Journal of Engineering Science and Technology, 12(10), 2723–2732. Rochelle, D., & Najafi, H. (2019). A review of the effect of biodiesel on gas turbine emissions and performance. Renewable and Sustainable Energy Reviews, 105(January), 129–137. https://doi.org/10.1016/j.rser.2019.01.056. 96 Saifuddin, N., Siti Fazlili, A., Kumaran, P., Pei-Jua, N., & Priathashini, P. (2016). The Production of Biodiesel and Bio-kerosene from Coconut Oil Using Microwave Assisted Reaction. IOP Conference Series: Earth and Environmental Science, 32(1). https://doi.org/10.1088/1755-1315/32/1/012039. Sajjadi, B., Houshfar, E., & Akia, M. (2013). A Review on Biodiesel Production Using Catalyzed Transesterification. Renewable and Sustainable Energy Reviews, 22, 466-473. Sakthivel, R., Ramesh, K., Purnachandran, R., & Mohamed Shameer, P. (2018). A review on the properties, performance and emission aspects of the third generation biodiesels. Renewable and Sustainable Energy Reviews, 82(November 2017), 2970–2992. https://doi.org/10.1016/j.rser.2017.10.037 Saluja, R. K., Kumar, V., & Sham, R. (2016). Stability of biodiesel – A review. Renewable and Sustainable Energy Reviews, 62, 866–881. https://doi.org/10.1016/j.rser.2016.05.001 Samart, C., Sookkumnerd, T., & Krasae, P. (2013). Biodiesel production from crude palm oil by two-step heterogeneous acid/base catalyzed transesterification. Energy Procedia, 34, 182-187. doi:10.1016/j.egypro.2013.06.912. Santos, E. (2012). Principales características de las materias primas utilizadas en la producción de biodiesel: la influencia del contenido y la concentración de los ácidos grasos. Ingenium Revista de La Facultad de Ingeniería, 13(25), 53–61. https://doi.org/10.21500/01247492.1307. Sharma, Y. C., Singh, B., & Upadhyay, S. N. (2011). Advancements in development and characterization of biodiesel: A review. Fuel, 90(5), 1309-1324. doi:10.1016/j.fuel.2010.11.040. 97 Schmidt, J., & De Rosa, M. (2020). Certified palm oil reduces greenhouse gas emissions compared to non-certified. Journal of Cleaner Production, 277. https://doi.org/10.1016/j.jclepro.2020.124045. Shahir, V. K., Jawahar, C. P., Suresh, P. R., & Vinod, V. (2017). Experimental Investigation on Performance and Emission Characteristics of a Common Rail Direct InjectionEngine Using Animal Fat Biodiesel Blends. Energy Procedia, 117, 283–290. https://doi.org/10.1016/j.egypro.2017.05.133. Sharma, L., Grover, N. K., Bhardwaj, M., & Kaushal, I. (2012). Comparison of Engine Performance of Mixed Jatropha and Cottonseed Derived Biodiesel Blends with Conventional Diesel. International Journal on Emerging Technologies, 3(1), 29–32. Shohaimi, N. A. M., & Marodzi, F. N. S. (2018). Transesterifikasi sisa minyak masak dalam pengeluaran biodiesel menggunakan CaO/Al2O3 mangkin heterogenus. Malaysian Journal of Analytical Sciences, 22(1), 157–165. https://doi.org/10.17576/mjas-2018-2201-20. Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., Atabani, A. E., & Chong, W. T. (2013). A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties. Renewable and Sustainable Energy Reviews, 24, 514–533. https://doi.org/10.1016/j.rser.2013.03.044. Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., Chong, W. T., & Boosroh, M. H. (2013). Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renewable and Sustainable Energy Reviews, 22, 346–360. https://doi.org/10.1016/j.rser.2013.01.055. Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., Kusumo, F., Aditiya, H. B., & 98 Ghazali, N. N. N. (2015). Schleichera oleosa L oil as feedstock for biodiesel production. Fuel, 156, 63–70. https://doi.org/10.1016/j.fuel.2015.04.046. Singh, R. K., & Padhi, S. K. (2006). Characterization of jatropha oil for the preparation of biodiesel. Indian Journal of Natural Products and Resources, 8(2), 127–132. Singh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14(1), 200–216. https://doi.org/10.1016/j.rser.2009.07.017. Singh Sikarwar, V., Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. (2017). Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 61, 189–248. https://doi.org/10.1016/j.pecs.2017.04.001. Sivakumar, M., Shanmuga Sundaram, N., Ramesh kumar, R., & Syed Thasthagir, M. H. (2018). Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine. Renewable Energy, 116, 518–526. https://doi.org/10.1016/j.renene.2017.10.002. Subbarayan, M. R., Senthil Kumaar, J. S., & Anantha Padmanaban, M. R. (2016). Experimental investigation of evaporation rate and exhaust emissions of diesel engine fuelled with cotton seed methyl ester and its blend with petro-diesel. Transportation Research Part D: Transport and Environment, 48, 369–377. https://doi.org/10.1016/j.trd.2016.08.024. Sundus, F., Fazal, M. A., & Masjuki, H. H. (2017). Tribology with biodiesel : A study on enhancing biodiesel stability and its fuel properties. Renewable and Sustainable Energy Reviews, 70(September 2015), 399–412. https://doi.org/10.1016/j.rser.2016.11.217. Suresh, M., Jawahar, C. P., & Richard, A. (2018). A review on biodiesel production, 99 combustion, performance, and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends. Renewable and Sustainable Energy Reviews, 92(April), 38–49. https://doi.org/10.1016/j.rser.2018.04.048. Suresh, S., Sinha, D., & Murugavelh, S. (2016). Biodiesel production from waste cotton seed oil: engine performance and emission characteristics. Biofuels, 7(6), 689–698. https://doi.org/10.1080/17597269.2016.1192442. Suryanto, A., Suprapto, S., & Mahfud, M. (2015). The Production of Biofuels from Coconut Oil Using Microwave. Modern Applied Science, 9(7), 93. https://doi.org/10.5539/mas.v9n7p93. Suthisripok, T., & Semsamran, P. (2018). The impact of biodiesel B100 on a small agricultural diesel engine. Tribology International, 128, 397–409. https://doi.org/10.1016/j.triboint.2018.07.042. Swaroop, C., Jose, T. K., & Ramesh, A. (2016). Property Testing of Biodiesel Derived From Coconut Testa Oil and Its Property Comparison With Standard Values. Technical Research Organisation India, 2(2),37-41. Syed, A., Quadri, S. A. P., Rao, G. A. P., & Mohd, W. (2017). Experimental investigations on DI (direct injection) diesel engine operated on dual fuel mode with hydrogen and mahua oil methyl ester (MOME) as injected fuels and effects of injection opening pressure. Applied Thermal Engineering, 114, 118–129. https://doi.org/10.1016/j.applthermaleng.2016.11.152. Tan, P. qiang, Hu, Z. yuan, Lou, D. ming, & Li, Z. jun. (2012). Exhaust emissions from a light-duty diesel engine with Jatropha biodiesel fuel. Energy, 39(1), 356–362. https://doi.org/10.1016/j.energy.2012.01.002. 100 Tan, Y. H., Abdullah, M. O., Kansedo, J., Mubarak, N. M., Chan, Y. S., & Nolasco-Hipolito, C. (2019). Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable Energy, 139, 696–706. https://doi.org/10.1016/j.renene.2019.02.110. Tan, Y. H., Abdullah, M. O., & Nolasco-Hipolito, C. (2015). The potential of waste cooking oil-based biodiesel using heterogeneous catalyst derived from various calcined eggshells coupled with an emulsification technique: A review on the emission reduction and engine performance. Renewable and Sustainable Energy Reviews, 47(July), 589–603. https://doi.org/10.1016/j.rser.2015.03.048. Teixeira, E. C., Mattiuzi, C. D. P., Feltes, S., Wiegand, F., & Santana, E. R. R. (2012). Estimated atmospheric emissions from biodiesel and characterization of pollutants in the metropolitan area of Porto Alegre-RS. Anais Da Academia Brasileira de Ciencias, 84(3), 655–667. https://doi.org/10.1590/S0001-37652012000300008. Tiwari, S., Shrivastava, S., Verma, U., Arnold, R., Saxena, A., & Chaudhari, R. (2013). Prospects of Biodiesel production by Alkali-based transesterification from Jatropha curcas and waste oil. International Journal of Pharmacy & Life Sciences, 4(11), 3093–3098. Veza, I., Faizullizam Roslan, M., Farid Muhamad Said, M., & Abdul Latiff, Z. (2020). Improved performance, combustion and emissions of SI engine fuelled with butanol: A review. International Journal of Automotive and Mechanical Engineering, 17(1), 7648–7666. https://doi.org/10.15282/IJAME.17.1.2020.13.0568. Veza, I., Said, M. F. M., & Latiff, Z. A. (2021). Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. Biomass and Bioenergy, 144(December 2020), 105919. https://doi.org/10.1016/j.biombioe.2020.105919. 101 Veza, I., Said, M. F. M., Latiff, Z. A., Roslan, M. F., & Azman Abas, M. (2021). Physico-chemical properties of Acetone-Butanol-Ethanol (ABE)-diesel blends: Blending strategies and mathematical correlations. Fuel, 286(P2), 119467. https://doi.org/10.1016/j.fuel.2020.119467. Wei, L., Cheng, R., Mao, H., Geng, P., Zhang, Y., & You, K. (2018). Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends. Energy, 144, 73–80. https://doi.org/10.1016/j.energy.2017.12.012. Woo, C., Kook, S., Hawkes, E. R., Rogers, P. L., & Marquis, C. (2016). Dependency of engine combustion on blending ratio variations of lipase-catalysed coconut oil biodiesel and petroleum diesel. Fuel, 169, 146–157. https://doi.org/10.1016/j.fuel.2015.12.024. Yang, J., Ahmed, A., & Hamdan, S. (2012). Production of Biodiesel From Waste Deep Frying Oils As a Renewable Energy Source. Asian Journal of Science and Technology, 4(11), 54–57. Yilmaz, N., Vigil, F. M., Benalil, K., Davis, S. M., & Calva, A. (2014). Effect of biodiesel-butanol fuel blends on emissions and performance characteristics of a diesel engine. Fuel, 135, 46–50. https://doi.org/10.1016/j.fuel.2014.06.022. Yogish, H., Chandrashekara, K., & Kumar, M. R. P. (2012). Optimization of experimental conditions for composite biodiesel production from transesterification of mixed oils of Jatropha and Pongamia. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 48(11), 1955–1960. https://doi.org/10.1007/s00231-012-1034-6. Yusoff, N. R. B. M., Hasan, S. bin H., & Abdullah, N. H. binti. (2013). Process to Produce Biodiesel Using Jatropha Curcas Oil (JCO). International Journal of Materials Science and Engineering, 1(2), 100–103. https://doi.org/10.12720/ijmse.1.2.100-103. Zhang, Y., Niu, S., Lu, C., Gong, Z., & Hu, X. (2020). Catalytic performance of NaAlO2/γ- 102 Al2O3 as heterogeneous nanocatalyst for biodiesel production: Optimization using response surface methodology. Energy Conversion and Management, 203(August), 112263. https://doi.org/10.1016/j.enconman.2019.112263.