Anaerobic Fluidized Bed Treatment of Palm Oil Mill Effluent

A 2 m³ pilot scale anaerobic fluidized bed reactor (APBR) was designed, constructed and operated to study its ability to treat high-strength industrial wastewater, at ambient temperature. Besides performance evaluation, kinetic coefficients of three models were determined. Reactor response to pH...

Full description

Saved in:
Bibliographic Details
Main Author: Al-Mamun, Abdullah
Format: Thesis
Language:English
English
Published: 1997
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/10002/1/FK_1997_6_A.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-upm-ir.10002
record_format uketd_dc
spelling my-upm-ir.100022011-02-28T06:48:30Z Anaerobic Fluidized Bed Treatment of Palm Oil Mill Effluent 1997-10 Al-Mamun, Abdullah A 2 m³ pilot scale anaerobic fluidized bed reactor (APBR) was designed, constructed and operated to study its ability to treat high-strength industrial wastewater, at ambient temperature. Besides performance evaluation, kinetic coefficients of three models were determined. Reactor response to pH shock load was also carried out. An early start-up of 17 days was experienced with diluted palm oil mill etlluent (POME) of 2000 mg/l COD. The hydraulic retention time (HRT) was reduced step wise from 24 hr to 4 hr which resulted in volumetric loading rates of 4.0 kgCOD/m³.d to 13.8 kgCOD/m³.d respectively. Maximum COD removal efficiencies achieved at those loading rates were between 65% and 85%. BOD and TSS removal rates were varied in the range of 64% - 91 % and 68% - 89% respectively. The raw substrate was rich in nitrogen nutrients and 17% to 55% of total nitrogen could be removed. Optimum HRT for the COD removal was found to be 1 2 hour, which was much less than that of conventional tank digester system. Reactor performance was found to be a function of loading rate, which decreased steadily with the increased loading rates. The AFBR exhibited low sludge production with sludge volume indices (SVI) of between 11 l/mg and 35 l/mg. General kinetic coefficients for Monod, Contois and Chen & Hashimoto's models were b = 0.23, Y = 0.79, µm = 4.63 and K = 2.47. Specific coefficients for Monod's model were k = 1 .22 and K. = 577, and for Contois' model, B = 0.05 and µm = 0.86. The pilot plant exhibited good buffering ability when pH shock load of 5.0 was imposed on the AFBR. Palm oil - Environmental impact changes - Case studies 1997-10 Thesis http://psasir.upm.edu.my/id/eprint/10002/ http://psasir.upm.edu.my/id/eprint/10002/1/FK_1997_6_A.pdf application/pdf en public masters Universiti Putra Malaysia Palm oil - Environmental impact changes - Case studies Faculty of Engineering English
institution Universiti Putra Malaysia
collection PSAS Institutional Repository
language English
English
topic Palm oil - Environmental impact changes - Case studies


spellingShingle Palm oil - Environmental impact changes - Case studies


Al-Mamun, Abdullah
Anaerobic Fluidized Bed Treatment of Palm Oil Mill Effluent
description A 2 m³ pilot scale anaerobic fluidized bed reactor (APBR) was designed, constructed and operated to study its ability to treat high-strength industrial wastewater, at ambient temperature. Besides performance evaluation, kinetic coefficients of three models were determined. Reactor response to pH shock load was also carried out. An early start-up of 17 days was experienced with diluted palm oil mill etlluent (POME) of 2000 mg/l COD. The hydraulic retention time (HRT) was reduced step wise from 24 hr to 4 hr which resulted in volumetric loading rates of 4.0 kgCOD/m³.d to 13.8 kgCOD/m³.d respectively. Maximum COD removal efficiencies achieved at those loading rates were between 65% and 85%. BOD and TSS removal rates were varied in the range of 64% - 91 % and 68% - 89% respectively. The raw substrate was rich in nitrogen nutrients and 17% to 55% of total nitrogen could be removed. Optimum HRT for the COD removal was found to be 1 2 hour, which was much less than that of conventional tank digester system. Reactor performance was found to be a function of loading rate, which decreased steadily with the increased loading rates. The AFBR exhibited low sludge production with sludge volume indices (SVI) of between 11 l/mg and 35 l/mg. General kinetic coefficients for Monod, Contois and Chen & Hashimoto's models were b = 0.23, Y = 0.79, µm = 4.63 and K = 2.47. Specific coefficients for Monod's model were k = 1 .22 and K. = 577, and for Contois' model, B = 0.05 and µm = 0.86. The pilot plant exhibited good buffering ability when pH shock load of 5.0 was imposed on the AFBR.
format Thesis
qualification_level Master's degree
author Al-Mamun, Abdullah
author_facet Al-Mamun, Abdullah
author_sort Al-Mamun, Abdullah
title Anaerobic Fluidized Bed Treatment of Palm Oil Mill Effluent
title_short Anaerobic Fluidized Bed Treatment of Palm Oil Mill Effluent
title_full Anaerobic Fluidized Bed Treatment of Palm Oil Mill Effluent
title_fullStr Anaerobic Fluidized Bed Treatment of Palm Oil Mill Effluent
title_full_unstemmed Anaerobic Fluidized Bed Treatment of Palm Oil Mill Effluent
title_sort anaerobic fluidized bed treatment of palm oil mill effluent
granting_institution Universiti Putra Malaysia
granting_department Faculty of Engineering
publishDate 1997
url http://psasir.upm.edu.my/id/eprint/10002/1/FK_1997_6_A.pdf
_version_ 1747811018224959488