Removal of Natural Organic Matter from Sg. Sireh Using Local Manufactured Activated Carbon

The presence of dissolved organic components in potable water supplies is aesthetically undesirable not only because it frequently imparts colour, taste and odour to the treated water, but may also be associated with a variety of problems relating to quality of water that are potentially hazardo...

Full description

Saved in:
Bibliographic Details
Main Author: See, Boon Piow
Format: Thesis
Language:English
English
Published: 1998
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/10200/1/FK_1998_19_A.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-upm-ir.10200
record_format uketd_dc
spelling my-upm-ir.102002011-03-14T02:15:30Z Removal of Natural Organic Matter from Sg. Sireh Using Local Manufactured Activated Carbon 1998-02 See, Boon Piow The presence of dissolved organic components in potable water supplies is aesthetically undesirable not only because it frequently imparts colour, taste and odour to the treated water, but may also be associated with a variety of problems relating to quality of water that are potentially hazardous to health. Activated carbons have been identified as a suitable and economical method for removal of dissolved organic compounds in drinking water. In this study, activated carbon, KI-6070 and KI-8085, which were provided by KEKWAH INDAH Sdn Bhd were used to remove dissolved organic compounds. The external surface area of activated carbons, KI-6070 and KI-B085 is approximately 277 m2/g and 547 m2/g, respectively. Both equilibrium experiments and fixed bed column studies were carried out to study the saturation capacity of the activated carbons. Freundlich and Summers isotherms are found to fit well for all the batch experiments with R-square being approximately 0.9 . The saturation capacity of KJ-6070 and KI-8085 are approximately 4.042 mg/g and 4.47 mg/g, respectively. The adsorption capacity of KI-8085 was better than that of KI-6070. In the fixed bed column study, generally higher empty bed contact time (EBCT) performed better compared to low EBCT. The maximum cumulative removal of NOM for KI-8085 was 3.0 mg/g, approximately three times higher than KI-6070 which was 1 .2 mg/g from the fixed bed column experiment. Clark model was able to simulate the breakthrough limit of the study, while the Adams-Bohart model could only fit up to 50% of the data collected. The study is significant in that it indicates that activated carbon are a possible option for removal of dissolved organic compounds in potable water supply. However, the design of the treatment process using activated carbon in our treatment plants must be carefully evaluated to take into account aesthetic, health and economic considerations. Rivers - Tanjung Karang - Carbon, Activated - Water quality - Case studies 1998-02 Thesis http://psasir.upm.edu.my/id/eprint/10200/ http://psasir.upm.edu.my/id/eprint/10200/1/FK_1998_19_A.pdf application/pdf en public masters Universiti Putra Malaysia Rivers - Tanjung Karang - Carbon, Activated - Water quality - Case studies Faculty of Engineering English
institution Universiti Putra Malaysia
collection PSAS Institutional Repository
language English
English
topic Rivers - Tanjung Karang - Carbon
Activated - Water quality - Case studies


spellingShingle Rivers - Tanjung Karang - Carbon
Activated - Water quality - Case studies


See, Boon Piow
Removal of Natural Organic Matter from Sg. Sireh Using Local Manufactured Activated Carbon
description The presence of dissolved organic components in potable water supplies is aesthetically undesirable not only because it frequently imparts colour, taste and odour to the treated water, but may also be associated with a variety of problems relating to quality of water that are potentially hazardous to health. Activated carbons have been identified as a suitable and economical method for removal of dissolved organic compounds in drinking water. In this study, activated carbon, KI-6070 and KI-8085, which were provided by KEKWAH INDAH Sdn Bhd were used to remove dissolved organic compounds. The external surface area of activated carbons, KI-6070 and KI-B085 is approximately 277 m2/g and 547 m2/g, respectively. Both equilibrium experiments and fixed bed column studies were carried out to study the saturation capacity of the activated carbons. Freundlich and Summers isotherms are found to fit well for all the batch experiments with R-square being approximately 0.9 . The saturation capacity of KJ-6070 and KI-8085 are approximately 4.042 mg/g and 4.47 mg/g, respectively. The adsorption capacity of KI-8085 was better than that of KI-6070. In the fixed bed column study, generally higher empty bed contact time (EBCT) performed better compared to low EBCT. The maximum cumulative removal of NOM for KI-8085 was 3.0 mg/g, approximately three times higher than KI-6070 which was 1 .2 mg/g from the fixed bed column experiment. Clark model was able to simulate the breakthrough limit of the study, while the Adams-Bohart model could only fit up to 50% of the data collected. The study is significant in that it indicates that activated carbon are a possible option for removal of dissolved organic compounds in potable water supply. However, the design of the treatment process using activated carbon in our treatment plants must be carefully evaluated to take into account aesthetic, health and economic considerations.
format Thesis
qualification_level Master's degree
author See, Boon Piow
author_facet See, Boon Piow
author_sort See, Boon Piow
title Removal of Natural Organic Matter from Sg. Sireh Using Local Manufactured Activated Carbon
title_short Removal of Natural Organic Matter from Sg. Sireh Using Local Manufactured Activated Carbon
title_full Removal of Natural Organic Matter from Sg. Sireh Using Local Manufactured Activated Carbon
title_fullStr Removal of Natural Organic Matter from Sg. Sireh Using Local Manufactured Activated Carbon
title_full_unstemmed Removal of Natural Organic Matter from Sg. Sireh Using Local Manufactured Activated Carbon
title_sort removal of natural organic matter from sg. sireh using local manufactured activated carbon
granting_institution Universiti Putra Malaysia
granting_department Faculty of Engineering
publishDate 1998
url http://psasir.upm.edu.my/id/eprint/10200/1/FK_1998_19_A.pdf
_version_ 1747811068102574080