Synthesis and characterization of grape seeds biochar and iron nanoparticles-added biochar for removal of cadmium from aqueous solutions

Due to the degradation of environmental quality, particularly in relation to the rising heavy metal concentrations in the environment, methods for removing these contaminants have been widely studied this study aims to investigate the adsorption method for cadmium removal in an aqueous solution usin...

Full description

Saved in:
Bibliographic Details
Main Author: Mohammed, El Erchelee Alaa Jassem
Format: Thesis
Language:English
Published: 2021
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/104308/1/AL%20ERCHELEE%20ALAA%20-%20IR.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-upm-ir.104308
record_format uketd_dc
spelling my-upm-ir.1043082023-07-26T02:11:48Z Synthesis and characterization of grape seeds biochar and iron nanoparticles-added biochar for removal of cadmium from aqueous solutions 2021-11 Mohammed, El Erchelee Alaa Jassem Due to the degradation of environmental quality, particularly in relation to the rising heavy metal concentrations in the environment, methods for removing these contaminants have been widely studied this study aims to investigate the adsorption method for cadmium removal in an aqueous solution using biomass-derived adsorbents. Grape seeds (GS) were used as biomass precursors to prepare grape seeds biochar (GSB) and to synthesize grape seeds-iron nanoparticles (GS-IONPs) for the purpose of removing cadmium ion (Cd) from aqueous solutions using batch adsorption technique. The GSB was prepared at a percentage yield of 48-50% by carbonization of dry grape seeds particles (0.5 mm) at 400 oC under inert gas (N2). The grape seeds iron oxide nanoparticles were prepared by bio-reduction of ferrous chloride salt, using grape seeds water extract. The opt optimum operating conditions of biosynthesis nanoparticles consist of mixing ferric chloride with grape seed water extract in a 2:1 v/v ratio and solution mixture with pH of 3.8. The feasibility of adsorbents to remove Cd from aqueous solutions was investigated through batch studies using the GSB and GS-IONPs, in addition to the commercial charcoal (CC) as adsorbents. Batch experiments were carried out to study the effects of cadmium initial concentrations in the range of 10-25 mg/l, contact time and solution pH (2-12) at solution temperature (30 oC). Batch adsorption of Cd onto the three adsorbents was fitted to the Langmuir, Freundlich, and Temkin isotherm models. It was found that the adsorption of cadmium onto GSB, GS-IONPs and CC followed the Langmuir isotherm model according to the R2 values (0.999 ≥ R2 ≥ 0.970), in addition to the 1/n values, which are less than one. The maximum adsorption capacities were found to be 10.63, 16.3 and 11.12 mg/g onto GSB, GS-IONPs and CC, respectively. Please add a conclusion here. Adsorption Iron oxides Cadmium - Toxicology 2021-11 Thesis http://psasir.upm.edu.my/id/eprint/104308/ http://psasir.upm.edu.my/id/eprint/104308/1/AL%20ERCHELEE%20ALAA%20-%20IR.pdf text en public masters Universiti Putra Malaysia Adsorption Iron oxides Cadmium - Toxicology Zulkifli, Syaizwan Zahmir
institution Universiti Putra Malaysia
collection PSAS Institutional Repository
language English
advisor Zulkifli, Syaizwan Zahmir
topic Adsorption
Iron oxides
Cadmium - Toxicology
spellingShingle Adsorption
Iron oxides
Cadmium - Toxicology
Mohammed, El Erchelee Alaa Jassem
Synthesis and characterization of grape seeds biochar and iron nanoparticles-added biochar for removal of cadmium from aqueous solutions
description Due to the degradation of environmental quality, particularly in relation to the rising heavy metal concentrations in the environment, methods for removing these contaminants have been widely studied this study aims to investigate the adsorption method for cadmium removal in an aqueous solution using biomass-derived adsorbents. Grape seeds (GS) were used as biomass precursors to prepare grape seeds biochar (GSB) and to synthesize grape seeds-iron nanoparticles (GS-IONPs) for the purpose of removing cadmium ion (Cd) from aqueous solutions using batch adsorption technique. The GSB was prepared at a percentage yield of 48-50% by carbonization of dry grape seeds particles (0.5 mm) at 400 oC under inert gas (N2). The grape seeds iron oxide nanoparticles were prepared by bio-reduction of ferrous chloride salt, using grape seeds water extract. The opt optimum operating conditions of biosynthesis nanoparticles consist of mixing ferric chloride with grape seed water extract in a 2:1 v/v ratio and solution mixture with pH of 3.8. The feasibility of adsorbents to remove Cd from aqueous solutions was investigated through batch studies using the GSB and GS-IONPs, in addition to the commercial charcoal (CC) as adsorbents. Batch experiments were carried out to study the effects of cadmium initial concentrations in the range of 10-25 mg/l, contact time and solution pH (2-12) at solution temperature (30 oC). Batch adsorption of Cd onto the three adsorbents was fitted to the Langmuir, Freundlich, and Temkin isotherm models. It was found that the adsorption of cadmium onto GSB, GS-IONPs and CC followed the Langmuir isotherm model according to the R2 values (0.999 ≥ R2 ≥ 0.970), in addition to the 1/n values, which are less than one. The maximum adsorption capacities were found to be 10.63, 16.3 and 11.12 mg/g onto GSB, GS-IONPs and CC, respectively. Please add a conclusion here.
format Thesis
qualification_level Master's degree
author Mohammed, El Erchelee Alaa Jassem
author_facet Mohammed, El Erchelee Alaa Jassem
author_sort Mohammed, El Erchelee Alaa Jassem
title Synthesis and characterization of grape seeds biochar and iron nanoparticles-added biochar for removal of cadmium from aqueous solutions
title_short Synthesis and characterization of grape seeds biochar and iron nanoparticles-added biochar for removal of cadmium from aqueous solutions
title_full Synthesis and characterization of grape seeds biochar and iron nanoparticles-added biochar for removal of cadmium from aqueous solutions
title_fullStr Synthesis and characterization of grape seeds biochar and iron nanoparticles-added biochar for removal of cadmium from aqueous solutions
title_full_unstemmed Synthesis and characterization of grape seeds biochar and iron nanoparticles-added biochar for removal of cadmium from aqueous solutions
title_sort synthesis and characterization of grape seeds biochar and iron nanoparticles-added biochar for removal of cadmium from aqueous solutions
granting_institution Universiti Putra Malaysia
publishDate 2021
url http://psasir.upm.edu.my/id/eprint/104308/1/AL%20ERCHELEE%20ALAA%20-%20IR.pdf
_version_ 1776100428632555520