Outlier Detections and Robust Estimation Methods for Nonlinear Regression Model Having Autocorrelated and Heteroscedastic Errors
The ordinary Nonlinear Least Squares (NLLS) and the Maximum Likelihood Estimator (MLE) techniques are often used to estimate the parameters of nonlinear models. Unfortunately, many researchers are not aware of the consequences of using such estimators when outliers are present in the data. The prob...
Saved in:
主要作者: | Riazoshams, Hossein |
---|---|
格式: | Thesis |
語言: | English English |
出版: |
2010
|
主題: | |
在線閱讀: | http://psasir.upm.edu.my/id/eprint/19681/1/IPM_2010_13.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Robust estimation technique and robust autocorrelation diagnostic for multiple Linear Regression Model with autocorrelated errors
由: Lim, Hock Ann
出版: (2014) -
Robust Diagnostics and Estimation in Heteroscedastic Regression Model in the Presence of Outliers
由: Rana, Md. Sohel
出版: (2010) -
Robust variable selection methods for large- scale data in the presence of multicollinearity, autocorrelated errors and outliers
由: Uraibi, Hassan S.
出版: (2016) -
Identification Of Outliers In Time Series Data
由: Adewale Asiata Omotoyosi -
Weighted Maximum Median Likelihood Estimation For Parameters In Multiple Linear Regression Model
由: Mohamed Ramli, Norazan
出版: (2008)