Modeling of 132 kV substation for insulation coordination

Substation is an essential part of the grid systems which often regarded as the most expensive component in the power systems. In general, insulation coordination studies are an important and are used to determine the reliability of the substation. In most blueprints, the default design of a substat...

Full description

Saved in:
Bibliographic Details
Main Author: Mohammed Ariff, Mohd Hatta
Format: Thesis
Language:English
English
Published: 2010
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/26684/1/FK%202010%20101R.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-upm-ir.26684
record_format uketd_dc
spelling my-upm-ir.266842013-10-28T03:02:00Z Modeling of 132 kV substation for insulation coordination 2010-01 Mohammed Ariff, Mohd Hatta Substation is an essential part of the grid systems which often regarded as the most expensive component in the power systems. In general, insulation coordination studies are an important and are used to determine the reliability of the substation. In most blueprints, the default design of a substation always being designed to have an absolute protections where all the possible stresses had already put into account according to the applied standard which sometimes being overprotected and expensive. The intention of this work is to model an existing substation in the way to investigate its design capability to withstand the excessive transient over voltage (i.e. lightning surge), in an attempt to have a more cost effective design model. The selected substation model is adopted from a 132 kV Simpang Renggam-Ayer Hitam substation. The substation is modeled using PSCAD/EMTDC software and the substation drawing details has been courteousness provided by the Tenaga Nasional Berhad (TNB). Throughout the model, several issues have been addressed and carried out in this study regarding the optimization of the substation design. Issues such as arrester placement strategies, determination of transformer breakdown current, arrester placement distance, as well as the energy handling capability for the arrester have been investigated. The findings unveil that; proper placement of arrester is crucially needed in order to optimize the substation performance in term of its reliability and cost effective. Besides that, the determination of current level associated to the breakdown of the transformer, could help the engineers to estimate the capability of the protection scheme in a way to improve the design. Moreover, the development of energy within the arrester which could cause the reduction of protection scheme potential is not only due to the magnitude of the stress current, but also influenced by other factors such as stress waveform durations and the geographical location of the substation. Finally, the highlight of this work is basically through the development of the substation model via PSCAD. It has become an alternative option for researchers to conduct various investigations in subject to substation design improvement and insulation coordination studies. Electric substations Overvoltage Electric insulators and insulation 2010-01 Thesis http://psasir.upm.edu.my/id/eprint/26684/ http://psasir.upm.edu.my/id/eprint/26684/1/FK%202010%20101R.pdf application/pdf en public masters Universiti Putra Malaysia Electric substations Overvoltage Electric insulators and insulation Faculty of Engineering English
institution Universiti Putra Malaysia
collection PSAS Institutional Repository
language English
English
topic Electric substations
Overvoltage
Electric insulators and insulation
spellingShingle Electric substations
Overvoltage
Electric insulators and insulation
Mohammed Ariff, Mohd Hatta
Modeling of 132 kV substation for insulation coordination
description Substation is an essential part of the grid systems which often regarded as the most expensive component in the power systems. In general, insulation coordination studies are an important and are used to determine the reliability of the substation. In most blueprints, the default design of a substation always being designed to have an absolute protections where all the possible stresses had already put into account according to the applied standard which sometimes being overprotected and expensive. The intention of this work is to model an existing substation in the way to investigate its design capability to withstand the excessive transient over voltage (i.e. lightning surge), in an attempt to have a more cost effective design model. The selected substation model is adopted from a 132 kV Simpang Renggam-Ayer Hitam substation. The substation is modeled using PSCAD/EMTDC software and the substation drawing details has been courteousness provided by the Tenaga Nasional Berhad (TNB). Throughout the model, several issues have been addressed and carried out in this study regarding the optimization of the substation design. Issues such as arrester placement strategies, determination of transformer breakdown current, arrester placement distance, as well as the energy handling capability for the arrester have been investigated. The findings unveil that; proper placement of arrester is crucially needed in order to optimize the substation performance in term of its reliability and cost effective. Besides that, the determination of current level associated to the breakdown of the transformer, could help the engineers to estimate the capability of the protection scheme in a way to improve the design. Moreover, the development of energy within the arrester which could cause the reduction of protection scheme potential is not only due to the magnitude of the stress current, but also influenced by other factors such as stress waveform durations and the geographical location of the substation. Finally, the highlight of this work is basically through the development of the substation model via PSCAD. It has become an alternative option for researchers to conduct various investigations in subject to substation design improvement and insulation coordination studies.
format Thesis
qualification_level Master's degree
author Mohammed Ariff, Mohd Hatta
author_facet Mohammed Ariff, Mohd Hatta
author_sort Mohammed Ariff, Mohd Hatta
title Modeling of 132 kV substation for insulation coordination
title_short Modeling of 132 kV substation for insulation coordination
title_full Modeling of 132 kV substation for insulation coordination
title_fullStr Modeling of 132 kV substation for insulation coordination
title_full_unstemmed Modeling of 132 kV substation for insulation coordination
title_sort modeling of 132 kv substation for insulation coordination
granting_institution Universiti Putra Malaysia
granting_department Faculty of Engineering
publishDate 2010
url http://psasir.upm.edu.my/id/eprint/26684/1/FK%202010%20101R.pdf
_version_ 1747811552596066304