Robust Random Regression Imputation method for missing data in the presence of outliers
The Ordinary Least Square (OLS) estimator is the best regression estimator if all the assumptions are met. However, the presence of missing data and outliers can distort the Ordinary Least Squares estimation and increase the variability of the parameters estimates. The main focus of this research i...
Saved in:
主要作者: | John, Ahamefule Happy |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | http://psasir.upm.edu.my/id/eprint/49818/1/FS%202013%2042RR.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
A robust ridge regression estimator in the presence of outliers and multicollinearity /
由: Marina Zahari
出版: (2001) -
Robust Diagnostics and Estimation in Heteroscedastic Regression Model in the Presence of Outliers
由: Rana, Md. Sohel
出版: (2010) -
Robust estimation and detection of outliers in simultaneous regression model
由: Mahdi, Orooba Mohsin
出版: (2016) -
A Robust Ridge Regression For Multicollinearity Problem In The Presence Of Outliers In The Data
由: Nur Aqilah Binti Ferdaos -
Outlier Detections and Robust Estimation Methods for Nonlinear Regression Model Having Autocorrelated and Heteroscedastic Errors
由: Riazoshams, Hossein
出版: (2010)