Rough Neural Networks Architecture For Improving Generalization In Pattern Recognition
Neural networks are found to be attractive trainable machines for pattern recognition. The capability of these models to accommodate wide variety and variability of conditions, and the ability to imitate brain functions, make them popular research area. This research focuses on developing hybrid...
Saved in:
主要作者: | Ali Adlan, Hanan Hassan |
---|---|
格式: | Thesis |
语言: | English English |
出版: |
2004
|
主题: | |
在线阅读: | http://psasir.upm.edu.my/id/eprint/5116/1/FK_2004_91.pdf |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
A Hybrid Rough Sets K-Means Vector Quantization Model For Neural Networks Based Arabic Speech Recognition
由: Babiker, Elsadig Ahmed Mohamed
出版: (2002) -
Speaker Independent Speech Recognition Using Neural Network
由: Tan, Chin Luh
出版: (2004) -
Invariant pattern recognition using higher order neural networks /
由: Sivaguru S.
出版: (2001) -
Pattern recognition using high order neural networks /
由: Teo, Raymund Yee Mian
出版: (1992) -
Pattern recognition using affine moment invariants and neural network for automotive application /
由: Choong, Yuen Liong
出版: (1996)