Scalability Improvement Of Multicast Source Movement Over Mobile Ipv6 Using Clustering Technique

Mobile IPv6 (MIPv6) describes how a mobile node can change its point of attachment to the Internet. While MIPv6 focuses on unicast communications, it also proposes two basic mechanisms, known as bi-directional tunnelling and remote subscription, to handle multicast communications with mobile members...

全面介紹

Saved in:
書目詳細資料
主要作者: Ali Al-Talib, Sahar A. M.
格式: Thesis
語言:English
English
出版: 2006
主題:
在線閱讀:http://psasir.upm.edu.my/id/eprint/5158/1/FK_2006_106.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
id my-upm-ir.5158
record_format uketd_dc
spelling my-upm-ir.51582013-06-13T11:45:03Z Scalability Improvement Of Multicast Source Movement Over Mobile Ipv6 Using Clustering Technique 2006 Ali Al-Talib, Sahar A. M. Mobile IPv6 (MIPv6) describes how a mobile node can change its point of attachment to the Internet. While MIPv6 focuses on unicast communications, it also proposes two basic mechanisms, known as bi-directional tunnelling and remote subscription, to handle multicast communications with mobile members. In the mean time, the deployment of Source-Specific Multicast (SSM) is of great interest, using the Protocol Independent Multicast-Sparse Mode (PIM-SM) and Multicast Listener Discovery (MLDv2) protocols. In the particular case of mobile IPv6 SSM sources, the mechanism proposed in MIPv6 to support multicast communications introduced a number of problems that need to be addressed. First, in most scenarios the MIPv6 solution leads to suboptimal routing by setting up a tunnel to forward packets between the home agent in its home network and the current location in the foreign network. The use of a third party when roaming which is the home agent leads to suboptimal routing. Second, it introduces a central point of failure (i.e. the Home Agent (HA)) that is not to be neglected. The proposed MIPv6 solution also induces a great traffic concentration around this central point. Third, the processing task of the central point increases with the number of mobile sources it serves, thus reducing the efficiency of multicast delivery. The objective of this thesis is to remove some of the obstacles encountered in the way of multicast deployment in the Internet, thereby making Mobile IPv6 better equipped to support mobile SSM sources. Recent proposals to provide multicasting over mobile IP focuses mainly on recipient mobility but little attention has been given to the case of source mobility. This thesis attempts to address this problem. The basic essence of the problem is that while the effect of receiver movement on the multicast tree is local, the effect of source movement may be global and it may affect the complete multicast delivery tree. The initial design was motivated by the need to support one-to-many and many-to-many applications in a scalable fashion. Such applications cannot be serviced efficiently with unicast delivery. As the overall problem statement of “Scalability Improvement of Multicast Source Movement over IPv6 Using Clustering Technique” is extremely complex, we divide the problem into the following components: build the multicast delivery tree for source specific multicast which is a routing issue; clustering receivers based on their IPv6 addresses; improve the state scalability of these clusters which is a deployment issue; find an efficient way for service distribution which is a deployment issue as well; and finally, the seamless integration of the work with Mobile IPv6 allowing it to support multicast efficiently for mobile nodes. The combined solution provides a comprehensive procedure for planning and managing a multicast-based IPv6 network. The outcome of this thesis are: a software to represent an architecture of a multicast delivery tree for one-to-many type of group communication, a group management scheme that could handle the end nodes subscription/un-subscription process with the required updates, an average subscription delay of between 0.255 ms-0.530 ms and un-subscription delay of between 0.0456 ms-0.087 ms for up to 50000 nodes, an approach to multicast forwarding state reduction that could support small-size groups as well as large-size groups, and finally the integration of the work with Mobile IPv6 to handle the multicast source movement. Mobile Cluster analysis 2006 Thesis http://psasir.upm.edu.my/id/eprint/5158/ http://psasir.upm.edu.my/id/eprint/5158/1/FK_2006_106.pdf application/pdf en public phd doctoral Universiti Putra Malaysia Mobile Cluster analysis Faculty of Engineering English
institution Universiti Putra Malaysia
collection PSAS Institutional Repository
language English
English
topic Mobile
Cluster analysis

spellingShingle Mobile
Cluster analysis

Ali Al-Talib, Sahar A. M.
Scalability Improvement Of Multicast Source Movement Over Mobile Ipv6 Using Clustering Technique
description Mobile IPv6 (MIPv6) describes how a mobile node can change its point of attachment to the Internet. While MIPv6 focuses on unicast communications, it also proposes two basic mechanisms, known as bi-directional tunnelling and remote subscription, to handle multicast communications with mobile members. In the mean time, the deployment of Source-Specific Multicast (SSM) is of great interest, using the Protocol Independent Multicast-Sparse Mode (PIM-SM) and Multicast Listener Discovery (MLDv2) protocols. In the particular case of mobile IPv6 SSM sources, the mechanism proposed in MIPv6 to support multicast communications introduced a number of problems that need to be addressed. First, in most scenarios the MIPv6 solution leads to suboptimal routing by setting up a tunnel to forward packets between the home agent in its home network and the current location in the foreign network. The use of a third party when roaming which is the home agent leads to suboptimal routing. Second, it introduces a central point of failure (i.e. the Home Agent (HA)) that is not to be neglected. The proposed MIPv6 solution also induces a great traffic concentration around this central point. Third, the processing task of the central point increases with the number of mobile sources it serves, thus reducing the efficiency of multicast delivery. The objective of this thesis is to remove some of the obstacles encountered in the way of multicast deployment in the Internet, thereby making Mobile IPv6 better equipped to support mobile SSM sources. Recent proposals to provide multicasting over mobile IP focuses mainly on recipient mobility but little attention has been given to the case of source mobility. This thesis attempts to address this problem. The basic essence of the problem is that while the effect of receiver movement on the multicast tree is local, the effect of source movement may be global and it may affect the complete multicast delivery tree. The initial design was motivated by the need to support one-to-many and many-to-many applications in a scalable fashion. Such applications cannot be serviced efficiently with unicast delivery. As the overall problem statement of “Scalability Improvement of Multicast Source Movement over IPv6 Using Clustering Technique” is extremely complex, we divide the problem into the following components: build the multicast delivery tree for source specific multicast which is a routing issue; clustering receivers based on their IPv6 addresses; improve the state scalability of these clusters which is a deployment issue; find an efficient way for service distribution which is a deployment issue as well; and finally, the seamless integration of the work with Mobile IPv6 allowing it to support multicast efficiently for mobile nodes. The combined solution provides a comprehensive procedure for planning and managing a multicast-based IPv6 network. The outcome of this thesis are: a software to represent an architecture of a multicast delivery tree for one-to-many type of group communication, a group management scheme that could handle the end nodes subscription/un-subscription process with the required updates, an average subscription delay of between 0.255 ms-0.530 ms and un-subscription delay of between 0.0456 ms-0.087 ms for up to 50000 nodes, an approach to multicast forwarding state reduction that could support small-size groups as well as large-size groups, and finally the integration of the work with Mobile IPv6 to handle the multicast source movement.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Ali Al-Talib, Sahar A. M.
author_facet Ali Al-Talib, Sahar A. M.
author_sort Ali Al-Talib, Sahar A. M.
title Scalability Improvement Of Multicast Source Movement Over Mobile Ipv6 Using Clustering Technique
title_short Scalability Improvement Of Multicast Source Movement Over Mobile Ipv6 Using Clustering Technique
title_full Scalability Improvement Of Multicast Source Movement Over Mobile Ipv6 Using Clustering Technique
title_fullStr Scalability Improvement Of Multicast Source Movement Over Mobile Ipv6 Using Clustering Technique
title_full_unstemmed Scalability Improvement Of Multicast Source Movement Over Mobile Ipv6 Using Clustering Technique
title_sort scalability improvement of multicast source movement over mobile ipv6 using clustering technique
granting_institution Universiti Putra Malaysia
granting_department Faculty of Engineering
publishDate 2006
url http://psasir.upm.edu.my/id/eprint/5158/1/FK_2006_106.pdf
_version_ 1747810363807629312