Robust estimation technique and robust autocorrelation diagnostic for multiple Linear Regression Model with autocorrelated errors
Autocorrelated errors cause the Ordinary Least Squares (OLS) estimators to become inefficient. Hence, it is very essential to detect the autocorrelated errors. The Breusch-Godfrey (BG) test is the most commonly used test for detection of autocorrelated errors. Since this test is easily affected by h...
محفوظ في:
المؤلف الرئيسي: | Lim, Hock Ann |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2014
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/52094/1/FS%202014%209RR.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Outlier Detections and Robust Estimation Methods for Nonlinear Regression Model Having Autocorrelated and Heteroscedastic Errors
بواسطة: Riazoshams, Hossein
منشور في: (2010) -
Robust variable selection methods for large- scale data in the presence of multicollinearity, autocorrelated errors and outliers
بواسطة: Uraibi, Hassan S.
منشور في: (2016) -
Robust diagnostic and parameter estimation for multiple linear and panel data regression models
بواسطة: Sani, Muhammad
منشور في: (2018) -
Robust Estimation Methods and Robust Multicollinearity Diagnostics for Multiple Regression Model in the Presence of High Leverage Collinearity-Influential Observations
بواسطة: Bagheri, Arezoo
منشور في: (2011) -
Robust Diagnostics and Estimation in Heteroscedastic Regression Model in the Presence of Outliers
بواسطة: Rana, Md. Sohel
منشور في: (2010)