CMOS Variable Gain Low Noise Amplifier for Radio Frequency Applications

The evolution of wireless telecommunication systems is expanding in an unprecedented way and such developments have prompted many design challenges specifically for low cost and low power System-on-Chip (SoC). In order to fulfill these needs, the design challenges need to be seen from all levels...

Full description

Saved in:
Bibliographic Details
Main Author: Lee, Lini
Format: Thesis
Language:English
English
Published: 2008
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/5469/1/FK_2008_73a.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-upm-ir.5469
record_format uketd_dc
spelling my-upm-ir.54692013-05-27T07:23:04Z CMOS Variable Gain Low Noise Amplifier for Radio Frequency Applications 2008 Lee, Lini The evolution of wireless telecommunication systems is expanding in an unprecedented way and such developments have prompted many design challenges specifically for low cost and low power System-on-Chip (SoC). In order to fulfill these needs, the design challenges need to be seen from all levels of the wireless system design from architecture, circuit and the process technology. The first stage of a receiver is the radio frequency (RF) input with low noise amplifier (LNA) as the first building block. Hence, it dominates the performance of the receiver system especially in noise and sensitivity. An LNA which incorporates a variable gain stage is useful in the receiver system in order to achieve continuous gain controllability which can be used to prevent saturation in the receiver when the input signal becomes relatively large compared to the power supply. Thus, circuit solutions of current mirror, gain control loop, capacitively coupled scheme and parallel inter-stage resonance are proposed. On-chip inductors are needed in a LNA to fulfill its requirements of noise and input matching. Therefore, spiral inductors are designed, analyzed and implemented according to the specifications. The main key part of this thesis describes the designs of the variable gain LNA (VGLNA) for low power consumption, continuous gain control and high selectivity over a wide frequency band with the target applications of frequency band at 2.0, 2.4, 5.0, 5.7 and 8 GHz. The VGLNA utilizes current mirror which allows precise copying of the current independent of temperature. With an adequate biased voltage applied, continuous gain control of approximately 28 dB is achieved at low current without degrading the noise performance of the VGLNA significantly, maintaining it below 2 dB. Second approach proposes the capacitively coupled LNA which ensures that the minimum required voltage supply for this topology is only one threshold voltage and not doubled the amount though it is a cascode transistors structure. Hence with these two innovative approaches, the power dissipation of the LNA would be minimal. Continuous gain control is achieved with the gain control loop and current mirror methods. By introducing a simple gain control loop composed of a gain control transistor and a capacitor, a wide continuous gain tuning range is achieved and with the current mirror, the VGLNA has continuous controllability of the gain. A new circuit structure named parallel inter-stage resonance LNA is proposed and it offers high selectivity of gain over the 5 GHz frequency band while keeping the noise figure below 2 dB. The simulation results meet the desired specifications and the measurement results of transistors and inductors are shown to be comparable with the analytical results. Finally, it can be concluded that the VGLNA designs have shown continuous controllable gain and low noise with low power consumption, not forgetting high selectivity over a wide frequency band. Radio frequency Amplifier, Radio frequency 2008 Thesis http://psasir.upm.edu.my/id/eprint/5469/ http://psasir.upm.edu.my/id/eprint/5469/1/FK_2008_73a.pdf application/pdf en public phd doctoral Universiti Putra Malaysia Radio frequency Amplifier, Radio frequency Faculty of Engineering English
institution Universiti Putra Malaysia
collection PSAS Institutional Repository
language English
English
topic Radio frequency
Radio frequency

spellingShingle Radio frequency
Radio frequency

Lee, Lini
CMOS Variable Gain Low Noise Amplifier for Radio Frequency Applications
description The evolution of wireless telecommunication systems is expanding in an unprecedented way and such developments have prompted many design challenges specifically for low cost and low power System-on-Chip (SoC). In order to fulfill these needs, the design challenges need to be seen from all levels of the wireless system design from architecture, circuit and the process technology. The first stage of a receiver is the radio frequency (RF) input with low noise amplifier (LNA) as the first building block. Hence, it dominates the performance of the receiver system especially in noise and sensitivity. An LNA which incorporates a variable gain stage is useful in the receiver system in order to achieve continuous gain controllability which can be used to prevent saturation in the receiver when the input signal becomes relatively large compared to the power supply. Thus, circuit solutions of current mirror, gain control loop, capacitively coupled scheme and parallel inter-stage resonance are proposed. On-chip inductors are needed in a LNA to fulfill its requirements of noise and input matching. Therefore, spiral inductors are designed, analyzed and implemented according to the specifications. The main key part of this thesis describes the designs of the variable gain LNA (VGLNA) for low power consumption, continuous gain control and high selectivity over a wide frequency band with the target applications of frequency band at 2.0, 2.4, 5.0, 5.7 and 8 GHz. The VGLNA utilizes current mirror which allows precise copying of the current independent of temperature. With an adequate biased voltage applied, continuous gain control of approximately 28 dB is achieved at low current without degrading the noise performance of the VGLNA significantly, maintaining it below 2 dB. Second approach proposes the capacitively coupled LNA which ensures that the minimum required voltage supply for this topology is only one threshold voltage and not doubled the amount though it is a cascode transistors structure. Hence with these two innovative approaches, the power dissipation of the LNA would be minimal. Continuous gain control is achieved with the gain control loop and current mirror methods. By introducing a simple gain control loop composed of a gain control transistor and a capacitor, a wide continuous gain tuning range is achieved and with the current mirror, the VGLNA has continuous controllability of the gain. A new circuit structure named parallel inter-stage resonance LNA is proposed and it offers high selectivity of gain over the 5 GHz frequency band while keeping the noise figure below 2 dB. The simulation results meet the desired specifications and the measurement results of transistors and inductors are shown to be comparable with the analytical results. Finally, it can be concluded that the VGLNA designs have shown continuous controllable gain and low noise with low power consumption, not forgetting high selectivity over a wide frequency band.
format Thesis
qualification_name Doctor of Philosophy (PhD.)
qualification_level Doctorate
author Lee, Lini
author_facet Lee, Lini
author_sort Lee, Lini
title CMOS Variable Gain Low Noise Amplifier for Radio Frequency Applications
title_short CMOS Variable Gain Low Noise Amplifier for Radio Frequency Applications
title_full CMOS Variable Gain Low Noise Amplifier for Radio Frequency Applications
title_fullStr CMOS Variable Gain Low Noise Amplifier for Radio Frequency Applications
title_full_unstemmed CMOS Variable Gain Low Noise Amplifier for Radio Frequency Applications
title_sort cmos variable gain low noise amplifier for radio frequency applications
granting_institution Universiti Putra Malaysia
granting_department Faculty of Engineering
publishDate 2008
url http://psasir.upm.edu.my/id/eprint/5469/1/FK_2008_73a.pdf
_version_ 1747810432504037376