Preparation and Characterization of Carboxymethyl Sago Waste and its Hydrogel

Carboxymethyl sago waste (CMSW) was prepared under heterogeneous condition as the product of the sago waste and sodium monochloroacetate (SMCA) in presence of sodium hydroxide (NaOH). The carboxymethylation of sago waste was optimized respect to degree of substitution (DS) and reaction efficiency (R...

Full description

Saved in:
Bibliographic Details
Main Author: Lim, Jew Kiat
Format: Thesis
Language:English
English
Published: 2006
Subjects:
Online Access:http://psasir.upm.edu.my/id/eprint/576/1/600409_fs_2006_29_abstrak_je__dh_pdf_.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-upm-ir.576
record_format uketd_dc
spelling my-upm-ir.5762013-05-27T06:49:25Z Preparation and Characterization of Carboxymethyl Sago Waste and its Hydrogel 2006-02 Lim, Jew Kiat Carboxymethyl sago waste (CMSW) was prepared under heterogeneous condition as the product of the sago waste and sodium monochloroacetate (SMCA) in presence of sodium hydroxide (NaOH). The carboxymethylation of sago waste was optimized respect to degree of substitution (DS) and reaction efficiency (RE). Maximum values of DS and RE were obtained with aqueous isopropyl alcohol as the reaction medium. Data obtained also suggest that water: isopropyl alcohol with 1:15 ratio was most appropriate for the reaction. The concentration of aqueous sodium hydroxide solution, which is used to activate the cellulose and starch was found optimal at 25 % (w/v). The increase of concentration of SMCA leads to an increase of DS, but only in certain extent, approaching a maximum value with anhydroglucose unit of sago waste: SMCA with 1:2.1 in molar ratio. The highest value of DS is being obtained when carboxymethylation was performed at an hour of alkalization and 2 hours etherification at temperature of 55 oC. The values of DS and RE under optimum condition for CMSW were 1.06 and 61.1% respectively. Sago waste were fractionated into cold water soluble (2.8%), hot water soluble (7.5%), 5% sodium hydroxide soluble polysaccharides (starch and hemicelluloses) (78.1%), 10% acetic acid and sodium chlorite (3.1%), 24% potassium hydroxide and 2% boric acid soluble hemicelluloses (1.9%) and -cellulose (10.5%), respectively. Moisture content, density, values of pH and solubility in water of CMSW were found higher than sago waste and these properties were enhanced by increasing the DS of CMSW. Fourier Transform Infrared Spectroscopy (FTIR) of CMSW revealed two new bands with sharp intensity at 1320 and 1422 cm-1, which respectively correspond to the vibration of substituted carboxyl groups (COO). Scanning electron microscopy studies showed that the sago waste consists of surface morphologies of cellulose fibres and smooth surface and oval granules of starch. After carboxymethylation, CMSW were rough and grooved with agglomeration of cellulose fibres and starch granules. Thermogravimetric analysis and differential thermogravimetric of CMSW showed the thermal stability of CMSW was more stable than sago waste from 35 to 900 oC. Results from differential scanning calorimetric revealed that the carboxymethylation reduced the crystallinity of starch and cellulose and reduced the portion of starch granules being able to be gelatinized in CMSW. Viscometry capillary study indicates that the degradation of the sago waste chains was occurred where the intrinsic viscosity and molecular weight of CMSW were found to be decreased after carboxymethylation. The CMSW hydrogels with various parameter of cross-linking were prepared by using electron beam irradiation. CMSW hydrogel with DS of 1.06, 80 % of CMSW aqueous solution and irradiation dose of 40 kGy showed the highest of gel content. The swelling of CMSW hydrogel decreased with the increase of the dose of irradiation and CMSW concentration. The swelling of CMSW hydrogel in water increases with increasing of hydrophilic substituents (–CH2COONa) in CMSW hydrogel. Swelling ratio of CMSW hydrogel in alkaline medium (0.1 M NaOH) and sodium chloride (0.1 M NaCl) were lower than swelling in deionized water but higher than acidic medium (0.1 M HCl). The presence of cations in swelling medium were remarkably affected the swelling ratio of CMSW hydrogel. Sago Colloids 2006-02 Thesis http://psasir.upm.edu.my/id/eprint/576/ http://psasir.upm.edu.my/id/eprint/576/1/600409_fs_2006_29_abstrak_je__dh_pdf_.pdf application/pdf en public masters Universiti Putra Malaysia Sago Colloids Faculty of Science English
institution Universiti Putra Malaysia
collection PSAS Institutional Repository
language English
English
topic Sago
Colloids

spellingShingle Sago
Colloids

Lim, Jew Kiat
Preparation and Characterization of Carboxymethyl Sago Waste and its Hydrogel
description Carboxymethyl sago waste (CMSW) was prepared under heterogeneous condition as the product of the sago waste and sodium monochloroacetate (SMCA) in presence of sodium hydroxide (NaOH). The carboxymethylation of sago waste was optimized respect to degree of substitution (DS) and reaction efficiency (RE). Maximum values of DS and RE were obtained with aqueous isopropyl alcohol as the reaction medium. Data obtained also suggest that water: isopropyl alcohol with 1:15 ratio was most appropriate for the reaction. The concentration of aqueous sodium hydroxide solution, which is used to activate the cellulose and starch was found optimal at 25 % (w/v). The increase of concentration of SMCA leads to an increase of DS, but only in certain extent, approaching a maximum value with anhydroglucose unit of sago waste: SMCA with 1:2.1 in molar ratio. The highest value of DS is being obtained when carboxymethylation was performed at an hour of alkalization and 2 hours etherification at temperature of 55 oC. The values of DS and RE under optimum condition for CMSW were 1.06 and 61.1% respectively. Sago waste were fractionated into cold water soluble (2.8%), hot water soluble (7.5%), 5% sodium hydroxide soluble polysaccharides (starch and hemicelluloses) (78.1%), 10% acetic acid and sodium chlorite (3.1%), 24% potassium hydroxide and 2% boric acid soluble hemicelluloses (1.9%) and -cellulose (10.5%), respectively. Moisture content, density, values of pH and solubility in water of CMSW were found higher than sago waste and these properties were enhanced by increasing the DS of CMSW. Fourier Transform Infrared Spectroscopy (FTIR) of CMSW revealed two new bands with sharp intensity at 1320 and 1422 cm-1, which respectively correspond to the vibration of substituted carboxyl groups (COO). Scanning electron microscopy studies showed that the sago waste consists of surface morphologies of cellulose fibres and smooth surface and oval granules of starch. After carboxymethylation, CMSW were rough and grooved with agglomeration of cellulose fibres and starch granules. Thermogravimetric analysis and differential thermogravimetric of CMSW showed the thermal stability of CMSW was more stable than sago waste from 35 to 900 oC. Results from differential scanning calorimetric revealed that the carboxymethylation reduced the crystallinity of starch and cellulose and reduced the portion of starch granules being able to be gelatinized in CMSW. Viscometry capillary study indicates that the degradation of the sago waste chains was occurred where the intrinsic viscosity and molecular weight of CMSW were found to be decreased after carboxymethylation. The CMSW hydrogels with various parameter of cross-linking were prepared by using electron beam irradiation. CMSW hydrogel with DS of 1.06, 80 % of CMSW aqueous solution and irradiation dose of 40 kGy showed the highest of gel content. The swelling of CMSW hydrogel decreased with the increase of the dose of irradiation and CMSW concentration. The swelling of CMSW hydrogel in water increases with increasing of hydrophilic substituents (–CH2COONa) in CMSW hydrogel. Swelling ratio of CMSW hydrogel in alkaline medium (0.1 M NaOH) and sodium chloride (0.1 M NaCl) were lower than swelling in deionized water but higher than acidic medium (0.1 M HCl). The presence of cations in swelling medium were remarkably affected the swelling ratio of CMSW hydrogel.
format Thesis
qualification_level Master's degree
author Lim, Jew Kiat
author_facet Lim, Jew Kiat
author_sort Lim, Jew Kiat
title Preparation and Characterization of Carboxymethyl Sago Waste and its Hydrogel
title_short Preparation and Characterization of Carboxymethyl Sago Waste and its Hydrogel
title_full Preparation and Characterization of Carboxymethyl Sago Waste and its Hydrogel
title_fullStr Preparation and Characterization of Carboxymethyl Sago Waste and its Hydrogel
title_full_unstemmed Preparation and Characterization of Carboxymethyl Sago Waste and its Hydrogel
title_sort preparation and characterization of carboxymethyl sago waste and its hydrogel
granting_institution Universiti Putra Malaysia
granting_department Faculty of Science
publishDate 2006
url http://psasir.upm.edu.my/id/eprint/576/1/600409_fs_2006_29_abstrak_je__dh_pdf_.pdf
_version_ 1747810252836831232