Robust techniques for linear regression with multicollinearity and outliers
The ordinary least squares (OLS) method is the most commonly used method in multiple linear regression model due to its optimal properties and ease of computation. Unfortunately, in the presence of multicollinearity and outlying observations in a data set, the OLS estimate is inefficient with inflat...
محفوظ في:
المؤلف الرئيسي: | Mohammed, Mohammed Abdulhussein |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2016
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/58669/1/IPM%202016%201IR%20D.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A robust ridge regression estimator in the presence of outliers and multicollinearity /
بواسطة: Marina Zahari
منشور في: (2001) -
Solution To The Multicollinearity Problem In Ridge Regression Model
بواسطة: Hanan Moh. B. Duzan -
Robust Estimation Methods and Robust Multicollinearity Diagnostics for Multiple Regression Model in the Presence of High Leverage Collinearity-Influential Observations
بواسطة: Bagheri, Arezoo
منشور في: (2011) -
Robust variable selection methods for large- scale data in the presence of multicollinearity, autocorrelated errors and outliers
بواسطة: Uraibi, Hassan S.
منشور في: (2016) -
A Robust Ridge Regression For Multicollinearity Problem In The Presence Of Outliers In The Data
بواسطة: Nur Aqilah Binti Ferdaos