Characterizing two- and three-qubit entanglement classes by their tensors

In this study, local unitary (LU) properties of two- and three-qubit quantum systems are studied. Specifically, the Schmidt decomposition approach to LU classification for two qubits is re-examined using a more general approach, i.e. higher order singular value decomposition (HOSVD). Later, HOSVD...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Choong, Pak Shen
التنسيق: أطروحة
اللغة:English
منشور في: 2016
الموضوعات:
الوصول للمادة أونلاين:http://psasir.upm.edu.my/id/eprint/66886/1/IPM%202016%2013%20IR.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In this study, local unitary (LU) properties of two- and three-qubit quantum systems are studied. Specifically, the Schmidt decomposition approach to LU classification for two qubits is re-examined using a more general approach, i.e. higher order singular value decomposition (HOSVD). Later, HOSVD is used to classify three-qubit pure states by LU operations. We found that due to HOSVD, it is possible to characterize the entanglement classes of three qubits by the eigenvalues distribution of its one-particle reduced density matrices. This finding generalized the similar classification results in the literature and it is hoped that this work will fill in the gap of LU classification from bipartite to multipartite quantum states by using HOSVD.