Lipase-catalyzed preparation of galactose oleate ester in ionic liquid

Lipase-catalyzed preparation of galactose oleate ester was performed in 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) ionic liquid with the addition of dimethylsulfoxide (DMSO) as a solubilizing agent and co-solvent, and Lipozyme RM IM (lipase from Rhizomucor miehei immobilized on macr...

全面介紹

Saved in:
書目詳細資料
主要作者: Mohd Saupi, Hanim Salami
格式: Thesis
語言:English
出版: 2012
主題:
在線閱讀:http://psasir.upm.edu.my/id/eprint/67129/1/FS%202012%2096%20IR.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Lipase-catalyzed preparation of galactose oleate ester was performed in 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) ionic liquid with the addition of dimethylsulfoxide (DMSO) as a solubilizing agent and co-solvent, and Lipozyme RM IM (lipase from Rhizomucor miehei immobilized on macroporous anion exchange resin) as the biocatalyst. Galactose oleate ester was purified and characterized by thin layer chromatography (TLC), fourier transform-infrared spectroscopy (FT-IR), high performance liquid chromatography (HPLC), direct injection-mass spectrometry (DI-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). Optimal preparation conditions with a high conversion rate (87%) was obtained in DMSO:[Bmim][BF4] (1:20, v:v) with 2% (w/w) Lipozyme RM IM loaded for 2 h, at 60C, with a stirring speed of 300 rpm and a molar ratio of galactose to oleic acid of 1:3. The formation of galactose oleate ester was evaluated through kinetic study using Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with one substrate inhibition was adopted as it best explained the experimental findings. The kinetic results showed the Km values (galactose = 0.02905 mmol/mL.mg and oleic acid = 0.00025 mmol/mL.mg). The low Michaelis constant values showed that the Lipozyme RM IM has higher affinity towards both substrates. The overall results on the physicochemical studies such as hydrophile lipophile balance (HLB) value, physical state, refractive index and surface tension illustrated that the ester possess suitability for industrial application as emulsifiers and surfactant.