One-pot synthesis and characterizations of (SrFe₁₂O1₁₉)ᵪ - (Ni₀.₅ZN₀.₅Fe₂O₄)₁ˍᵪ nanocomposite ferrites

Nanocomposite ferrites are known as an exchange - spring magnet when they are well exchange coupled. This phenomena has been studied by synthesized (SrFe12O19) - (Ni0.5Zn0.5Fe2O4) nanoparticles using a one-pot thermal treatment method. This technique is a single reaction mixture involving metal n...

全面介紹

Saved in:
書目詳細資料
主要作者: Abdullah Ahmad, Hartini
格式: Thesis
語言:English
出版: 2017
主題:
在線閱讀:http://psasir.upm.edu.my/id/eprint/68670/1/FS%202018%2023%20-%20IR.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
id my-upm-ir.68670
record_format uketd_dc
spelling my-upm-ir.686702019-05-31T00:55:39Z One-pot synthesis and characterizations of (SrFe₁₂O1₁₉)ᵪ - (Ni₀.₅ZN₀.₅Fe₂O₄)₁ˍᵪ nanocomposite ferrites 2017-11 Abdullah Ahmad, Hartini Nanocomposite ferrites are known as an exchange - spring magnet when they are well exchange coupled. This phenomena has been studied by synthesized (SrFe12O19) - (Ni0.5Zn0.5Fe2O4) nanoparticles using a one-pot thermal treatment method. This technique is a single reaction mixture involving metal nitrates and the capping agent which is polyvinyl pyrrolidone (PVP). Nanocomposite ferrite nanoparticles were succeed to synthesize via single reaction technique. The starting materials used were PVP as the capping agent, deionized water and metal nitrates as the precursors. This study was divided into 3 sections. For the first part, we investigated the effect of PVP as a capping agent. Composite ferrites with 20% of hard and 80% of soft ferrites were fabricated by varying the concentrations of PVP (0 to 0.06 g/ml). For the second part, we studied the influence of phase distributions on the particles. Nanocomposite ferrites of (SrFe12O19)x – (Ni0.5Zn0.5Fe2O4)1-x were synthesized by varying the contents of x (0.1 to 0.9). The last part of this research was on calcination temperatures. Samples of (SrFe12O19)x – (Ni0.5Zn0.5Fe2O4)1-x where (x = 0.8 and 0.9) were calcined at 600 ºC to 1000 ºC for 3 hours. Several characterizations were carried out such as X-ray Diffraction (XRD), Vibrating Sample Magnetometer (VSM), Fourier Transform Infra-red (FT-IR), Thermogravimetric Analysis (TGA), microstructure analysis using Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). From the XRD analysis, both soft and hard phases were coexist for every samples. The optimum concentration of PVP was 0.06 g/ml which gave a better magnetic properties compared to other concentrations of PVP used. In addition, (SrFe12O19)x – (Ni0.5Zn0.5Fe2O4)1-x nanocomposite with x = 0.9 shows highest Hc value with 5692 G and the optimum calcination temperature was found out to be at 800 ºC. From the analyses show that the hard/soft nanocomposite ferrites were able to synthesize by this one-pot thermal treatment method. Therefore, this technique is one of the promising method to fabricate nanocomposite permanent magnet. Nanocomposites (Materials) Nanostructured materials 2017-11 Thesis http://psasir.upm.edu.my/id/eprint/68670/ http://psasir.upm.edu.my/id/eprint/68670/1/FS%202018%2023%20-%20IR.pdf text en public masters Universiti Putra Malaysia Nanocomposites (Materials) Nanostructured materials
institution Universiti Putra Malaysia
collection PSAS Institutional Repository
language English
topic Nanocomposites (Materials)
Nanostructured materials

spellingShingle Nanocomposites (Materials)
Nanostructured materials

Abdullah Ahmad, Hartini
One-pot synthesis and characterizations of (SrFe₁₂O1₁₉)ᵪ - (Ni₀.₅ZN₀.₅Fe₂O₄)₁ˍᵪ nanocomposite ferrites
description Nanocomposite ferrites are known as an exchange - spring magnet when they are well exchange coupled. This phenomena has been studied by synthesized (SrFe12O19) - (Ni0.5Zn0.5Fe2O4) nanoparticles using a one-pot thermal treatment method. This technique is a single reaction mixture involving metal nitrates and the capping agent which is polyvinyl pyrrolidone (PVP). Nanocomposite ferrite nanoparticles were succeed to synthesize via single reaction technique. The starting materials used were PVP as the capping agent, deionized water and metal nitrates as the precursors. This study was divided into 3 sections. For the first part, we investigated the effect of PVP as a capping agent. Composite ferrites with 20% of hard and 80% of soft ferrites were fabricated by varying the concentrations of PVP (0 to 0.06 g/ml). For the second part, we studied the influence of phase distributions on the particles. Nanocomposite ferrites of (SrFe12O19)x – (Ni0.5Zn0.5Fe2O4)1-x were synthesized by varying the contents of x (0.1 to 0.9). The last part of this research was on calcination temperatures. Samples of (SrFe12O19)x – (Ni0.5Zn0.5Fe2O4)1-x where (x = 0.8 and 0.9) were calcined at 600 ºC to 1000 ºC for 3 hours. Several characterizations were carried out such as X-ray Diffraction (XRD), Vibrating Sample Magnetometer (VSM), Fourier Transform Infra-red (FT-IR), Thermogravimetric Analysis (TGA), microstructure analysis using Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). From the XRD analysis, both soft and hard phases were coexist for every samples. The optimum concentration of PVP was 0.06 g/ml which gave a better magnetic properties compared to other concentrations of PVP used. In addition, (SrFe12O19)x – (Ni0.5Zn0.5Fe2O4)1-x nanocomposite with x = 0.9 shows highest Hc value with 5692 G and the optimum calcination temperature was found out to be at 800 ºC. From the analyses show that the hard/soft nanocomposite ferrites were able to synthesize by this one-pot thermal treatment method. Therefore, this technique is one of the promising method to fabricate nanocomposite permanent magnet.
format Thesis
qualification_level Master's degree
author Abdullah Ahmad, Hartini
author_facet Abdullah Ahmad, Hartini
author_sort Abdullah Ahmad, Hartini
title One-pot synthesis and characterizations of (SrFe₁₂O1₁₉)ᵪ - (Ni₀.₅ZN₀.₅Fe₂O₄)₁ˍᵪ nanocomposite ferrites
title_short One-pot synthesis and characterizations of (SrFe₁₂O1₁₉)ᵪ - (Ni₀.₅ZN₀.₅Fe₂O₄)₁ˍᵪ nanocomposite ferrites
title_full One-pot synthesis and characterizations of (SrFe₁₂O1₁₉)ᵪ - (Ni₀.₅ZN₀.₅Fe₂O₄)₁ˍᵪ nanocomposite ferrites
title_fullStr One-pot synthesis and characterizations of (SrFe₁₂O1₁₉)ᵪ - (Ni₀.₅ZN₀.₅Fe₂O₄)₁ˍᵪ nanocomposite ferrites
title_full_unstemmed One-pot synthesis and characterizations of (SrFe₁₂O1₁₉)ᵪ - (Ni₀.₅ZN₀.₅Fe₂O₄)₁ˍᵪ nanocomposite ferrites
title_sort one-pot synthesis and characterizations of (srfe₁₂o1₁₉)ᵪ - (ni₀.₅zn₀.₅fe₂o₄)₁ˍᵪ nanocomposite ferrites
granting_institution Universiti Putra Malaysia
publishDate 2017
url http://psasir.upm.edu.my/id/eprint/68670/1/FS%202018%2023%20-%20IR.pdf
_version_ 1747812616483373056