Support vector machine and its applications for linear and nonlinear regression in the presence of outliers of high dimensional data
The ordinary least squares (OLS) is reported as the most commonly used method to estimate the relationship between variables (inputs and output) in the linear regression models because of its optimal properties and ease of calculation. Unfortunately, the OLS estimator is not efficient in cases of th...
Saved in:
主要作者: | Sleabi, Waleed Dhhan |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | http://psasir.upm.edu.my/id/eprint/69129/1/FS%202016%2050%20IR.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Robust diagnostics and parameter estimation methods in linear and nonlinear regression based on nu support vector regression for high dimensional data
由: Rashid, Al-Dulaimi Abdullah Mohammed
出版: (2022) -
Robust techniques for linear regression with multicollinearity and outliers
由: Mohammed, Mohammed Abdulhussein
出版: (2016) -
A robust ridge regression estimator in the presence of outliers and multicollinearity /
由: Marina Zahari
出版: (2001) -
Robust Diagnostics and Estimation in Heteroscedastic Regression Model in the Presence of Outliers
由: Rana, Md. Sohel
出版: (2010) -
Robust Random Regression Imputation method for missing data in the presence of outliers
由: John, Ahamefule Happy
出版: (2013)