Modified Miller-Rabin primality test algorithm to detect prime numbers for generating RSA keys
A prime number is a number that is only divisible by one and itself, which is essentially saying that it has no divisor. Prime numbers are important in the security field because many encryption algorithms are based on the fact that it is very easy to multiply two large prime numbers and get the...
محفوظ في:
المؤلف الرئيسي: | Shereek, Balkees Mohamed |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2016
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/69356/1/FSKTM%202016%2021%20IR.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Enhancement of steganography metrics scheme to assess the quality of image /
بواسطة: Frajat, Ali Khadair Kadam
منشور في: (2011) -
Performance analysis and improvement of rabin primitive based cryptosystems
بواسطة: Mahad, Zahari
منشور في: (2014) -
A modified approach to improve the performance of AES using feistel structure
بواسطة: Al-Ansi, Afeef Yahya Ahmed
منشور في: (2018) -
Key Transformation Approach for Rijndael Security
بواسطة: Sulong, Mek Rahmah
منشور في: (2008) -
New compendium of RSA vulnerabilities
بواسطة: Abd Ghafar, Amir Hamzah
منشور في: (2020)