Group actions and their applications in associative algebras and algebraic statistics
Mathematics and Physics. There can be different ways for a group to act on different kinds of objects. This dissertation is mostly concerned with group actions on vector spaces and affine algebraic varieties. It is mainly comprised of three parts. In the first part, we consider an action of...
Saved in:
主要作者: | Mohammed, Nadia Faiq |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2017
|
主題: | |
在線閱讀: | http://psasir.upm.edu.my/id/eprint/69404/1/FS%202017%2061%20ir.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Combinatorial structure associated with low-dimensional filiform leibniz algebras
由: Ahmad Jamri, Ayu Ameliatul Shahilah
出版: (2017) -
Classification of a subclass of filiform Leibniz algebra
由: Abdulkareem, Abdulafeez Olalekan
出版: (2014) -
Classification of leibniz algebras over finite fields
由: Mohammed, Mohammed Ardo
出版: (2019) -
Derivations of some classes of Leibniz algebras
由: Ahmed I, Al-Nashri Al-Hossain
出版: (2013) -
Central extension of low dimensional associative and Leibniz algebras
由: Ab Rahman, Nurnazhifa
出版: (2020)